
Product Line Testing Group

This group has the task to investigate testing criteria, techniques and tools adequate to
PL testing. At the very end, the aim is to contribute to the establishment of low-cost,
efficient testing strategies in the context of PL development, ideally in the scope of a
pre-defined PL development process. We would also like to conduct experimental
studies with the perspective of evaluating the cost and benefits of developing products
based on product lines against the traditional approaches. We consider in the scope of
this study developing open educational and training modules to support the use and
dissemination of the underlying concepts and tools. This research line is motivated by
the fact that there are few initiatives of systematically addressing testing in the scope of
product line production. It is also of our interest to explore other VV&T techniques,
such as inspection and PL architecture evaluation. We will explore these ideas in the
scope of two PL domains: meshing tools and interpreters, as discussed below.

First of all, we decided to provide to the Chilean partners the JABUTI testing tool
family, developed at the ICMC-USP, and related training material, motivating the use of
control and data-flow based testing criteria for OO and AO development. In a short
period of time (2 months) the mutation based criteria will also be available in these
tools.

In a Software product line (SPL) we can identify at least two important stages [6]:
Domain Engineering (Core Asset Development) and Application Engineering (Product
Development). The role of domain engineering is to produce common parts of the
applications. The role of application engineering is to be a consumer of domain
engineering producing the applications based on the common parts of the SPL [7].

Depending on the approach [3, 4], Domain Engineering has three or four stages,
respectively. The additional one is Domain Testing. Similarly, one additional stage,
Application Testing, is included in Application Engineering.

For Domain engineering the stages are:

1. Domain Analysis DA:
DA is the process through which the information used for developing all software
systems within the SPL scope is identified, captured and organized with the purpose of
making it available for reuse in future developments [5]. It has been identified as one of
the most important factors for the success of software reuse [1].

2. Domain Design (DD):
DD is the process of developing a design model from the products of domain analysis
and the knowledge gained from the study of software requirement/design reuse and
generic architectures [6]. The DD encompasses all activities for defining the reference
architecture of the product line. The reference architecture provides a common, high-
level structure for all product line applications [4].

3. Domain Implementation (DI):

DI is the process of identifying reusable components based on the domain model and
generic architecture. Using the domain knowledge gathered during domain analysis, and
the generic architecture developed during the domain design, domain engineers acquire
and, where necessary, create reusable assets which are catalogued into a component
library for use by application engineers [6].

4. Domain Testing (DT):
DT is responsible for the validation and verification of reusable components. DT tests
the components against their specification, i.e. requirements, architecture, and design
artifacts. In addition, DT develops reusable test artifacts to reduce the effort for
application testing [4].

We divided the main activities to achieve these goals in short, medium and long term.

In short term, we would like to conduct two systematic reviews in order to establish
the ground for our initiatives. One would be to identify the testing activities and tools
that have been explored for PL testing. The second one would be to identify the PL
development processes and underlying VV&T activities. With these studies we hope we
will be able to propose a VV&T strategy to a pre-defined or selected PL development
process.

- Systematic Review of PL testing

Primary Question 1: Which techniques and criteria have been investigated or applied for
PL testing?

 Secondary Question 1: Among the techniques and criteria being investigated in the PL
development context, which are the specific ones for PL?

 Secondary Question 2: What are the defect types specific to PL development that have
been identified, including taxonomy and defect models.

 Secondary Question 3: What types of experimental studies have been conducted with
relation to PL testing approaches?

 Secondary Question 4: Which techniques and criteria have supporting tools? Are they
open source?

Secondary Question 5: What are the open problems?

DEADLINE: September 2008

- Systematic Review of PL development processes

Primary Question 2: What are the PL software development processes and methods that
have been investigated?

Secondary Question 1: Which are the VV&T techniques and criteria that have been
proposed or used inside these processes?.

Secondary Question 2: What are the languages and models that have been used inside
these processes?

DEADLINE: November 2008
(we should get together with the PL group (Thais, Sergio and Cecilia)

We also consider that it would be worthwhile to explore (medium-term goals) the
adequacy of some previous work on testing in the scope of PL development and testing:

- regression testing:

Initiatives like coverage and modification based regression testing are worthwhile to be
investigated to support the reuse of testing artifacts among the testing activities related
to the products of a product line. Moreover, it seems interesting to investigate how
traditional regression testing approaches would fit to the evolution and maintenance of a
product line and related products. A “fast” bibliographic review shall be conduct.

DEADLINE: September 2008

- architecture based testing:

There are many initiatives to establishing testing based on architectures. We believe
these works can be effectively explored for PL architecture testing and also for
generating testing requirements for the related PL products. A “fast” bibliographic
review shall be conduct.

DEADLINE: September 2008

- Define Product Line Testing Strategies (Test Bed Product Line):

The basic idea here is to think about a Product Line to generate Test Bed Products. This
is a very new idea, as far as we now, and it should be further explored and clarified. We
put it here just to register the idea.

- PL Architecture evaluation:

There is an on-going work at ICMC-USP, under Maldonado´s supervision looking at a
metric suite to evaluate PL architectures. We would like to explore it in the two PL
domain we will be investigating in this group.

- Open Didatic and Trainning Material development

Many researches have been conducted regarding to education and learning. In this
context, one of the relevant activities is the development of educational modules. In a
previous PhD thesis (BARBOSA 2006), we have discussed and investigated
mechanisms to support the content modeling activity and the development process of
such modules. Requirements and perspectives for conceptual, instructional and didactic
modeling were identified. An integrated approach (IMA−CID) dealing with different

perspectives related to the modeling content activity have been proposed. In the
conceptual level, extended conceptual maps are applied. In the instructional level, the
HMBS/Instructional model is established. In the didactic level, the HMBS/Didactic
model is proposed. Regarding to the development process, systematic activities and
tasks are established in the context of a standard process for the development of
educational modules. Specialization and instantiation activities are also investigated. A
maturity model – CMM/Educational – has been proposed. We intend to apply such
results to develop educational and training modules in the scope of PL research and
development.

Recently, we have investigated these approaches inside the QUALIPSO project.
Qualipso project is one of the largest Open Source initiative funded by the European
Commission, and is funded under EU´s sixth framework program (FP6), as part of the
Information Society Technologies (IST) initiative. It is a unique alliance of European,
Brazilian and Chinese ICT industry players, SMEs, governments and academics to help
industries and governments fuel innovation and competitiveness with Open Source
software. The aim is to leverage the Open Source Software development current
practices to sound, well recognized and established industrial operations. A network of
Open Source Competence Centers will make available the results of the Qualipso
Project (www.qualipso.org). In Brazil, the Competence Center will be at the
Universidade de São Paulo.

Our long-term goals would be investigating the VV&T activities in the two PL domain
mentioned above: Messhing Tools and Interpreters.

- Establishing and evaluating testing strategies for Meshing Tool Domain PL

Meshes are used for numerical modeling, visualizing and/or simulating objects or
phenomena [2]. A mesh is a discretization of a certain domain geometry. This
discretization can be either composed by a unique type of element, such as triangles,
tetrahedra or hexahedra, or a combination of different types of elements. Meshing tools
generate and manage these discretizations.

Meshing tools are inherently sophisticated software due to the complexity of concepts
involved, the large number of interacting elements they manage, and the application
domains where they are used. Among others, these domains include engineering (e.g.
mechanical and structural design) and medicine (e.g. surgery). Meshing tools
complexity mainly relies on the components involved, as is the case for all scientific
computing software, and not on the complicated distribution or concurrency because
meshing tools are usually single process desktop applications.

- Looking at Intrepreters as a Product Line Domain:

Interpreters are a mean to specify programming language semantics. The benefit of
using interpreters instead of compilers or virtual machines for this specification is their
higher level of abstraction. Using interpreters is no longer necessary to deal with low
level issues like machine code programming and program optimizations.

http://www.qualipso.org/

Interpreters make it easier to experiment with small variations of language semantics
and consequently, easier to produce a new interpreter with slightly different semantics
starting from a previously defined one. This is an interesting case due to the current
trend towards domain-specific languages. The problem here is that testing all those
tailored interpreters does not seem to be an easy task. In this workshop we conceived
the idea of seeing this set of interpreters as products from the same product line. In this
perspective, we intend to benefit from compiler testing experience to validate the
interpreters. We also think that generic approaches for testing like mutation testing can
be very useful in this case, for embedding facilities to test generation in the interpreters.

- Experimental Study definition

After defining processes and related VV&T strategies for the two above PL domains,
we will carry out experimental studies, in bilateral collaboration, aiming at evaluating
the cost and benefits of developing products based on product lines against the
traditional approaches.

Re quests for students interchanging

We think it would be effective to have bilateral technical visits. ICMC-USP intends to
host Pedro and Rodolfo to improve the collaboration and the work in progress. In the
other way around, ICMC-USP also intends to send students to Universidade do Chile.
All the visits should be planned for the second semester of 2008, with a duration from 2
to 4 weeks.

[1] Guillermo Arango. A Brief Introduction to Domain Analysis. In Proceedings of the
1994 ACM Symposium on Applied Computing (SAC '94), pages 42-46. ACM Press,
1994.

[2] Rod W. Douglass, Graham F. Carey, David R. White, Glen A. Hansen,Yannis
Kallinderis, and Nigel P. Weatherill. Current views on grid generation: summaries of a
panel discussion. Numerical Heat Transfer, Part B: Fundamentals, 41(3-4):211-237,
March 2002.

[3] Linda Northrop and Paul Clements. A Framework for Software Product Line
Practice. Version 5.0, July 2007. http://www.sei.cmu.edu/productlines/framework.html.

[4] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line
Engineering. Foundations, Principles, and Techniques. Springer, August 2005.

[5] Rubén Prieto-Díaz. Domain Analysis: An Introduction. SIGSOFT Software
Engineering Notes, 15(2):47-54, 1990.

[6] SEI. Domain Engineering, January 2007.
http://www.sei.cmu.edu/domainengineering/domain_eng.html.

[7] Antti Tevanlinna, Juha Taina, and Raine Kauppinen. Product Family
Testing: a Survey. SIGSOFT Software Engineering Notes, 29(2):12-17, March
2004.

Reference:
BARBOSA, Ellen Francine; A Contribution to the Modeling and to the Development
Process of Educational Modules. PhD thesis, Instituto de Ciências Matemáticas e de
Computação, University of São Paulo, São Carlos (SP), 2006, 270p. (In Portuguese).

