
Extending Omniscient Debugging to Support
Aspect-Oriented Programming

Guillaume Pothier
∗

PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile – Santiago, Chile

gpothier@dcc.uchile.cl
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ABSTRACT
Debugging is a tedious and costly process that demands
a profound understanding of the dynamic behavior of pro-
grams. Debugging aspect-oriented software is even more dif-
ficult: to implement the semantics of aspects, a number of
implicit activities are performed, whose relation to source
code is less direct to grasp. We show how omniscient debug-
ging, a technique that consists in recording the activity of
a program to later navigate in its history, can be extended
to suit the particularities of aspect-oriented software. By
enhancing program understandability, improvements to the
tooling associated with aspect orientation will encourage the
widespread acceptance of this emerging paradigm.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; D.2.6
[Programming Environments]: Integrated environments;
D.3.4 [Processors]: Debuggers

General Terms
Design, Languages, Reliability

Keywords
Omniscient debugging, aspect-oriented programming

1. INTRODUCTION
Aspect-Oriented Programming (AOP) provides means for

proper modularization of crosscutting concerns, whose im-
plementation would otherwise be scattered across several
modules [6]. In most AOP approaches, modularization is
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†É. Tanter is partially financed by the Millenium Nu-
cleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile, and by FONDECYT Project 11060493.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
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achieved by defining aspects that affect the structure or the
behavior of a base program that is mostly unaware, at least
syntactically, of these aspects. One drawback of this ap-
proach is that it makes the comprehension of AOP-based
systems more difficult: understanding a piece of code might
require the understanding of the whole system, or at least
of its aspects [13].

The time-consuming task of debugging has a significant
impact on the cost of software [14]. Most of the time is usu-
ally spent locating the cause of the bug, often using a tedious
trial-and-error approach, while actually fixing the bug can
be trivial [5]. A strategy frequently used by programmers
is to mentally simulate the execution of the program [5].
Thus the complexity of debugging increases with the level
of abstraction of the programming paradigm because the
correspondence between source code and runtime behavior
becomes less direct. For instance, in object-oriented pro-
gramming, one cannot always know by looking at the source
code which method will be evaluated as a result of a method
call, because of the dynamic dispatch mechanism. This is
even more true for AOP, where the behavior of a given piece
of code can be altered to an arbitrary degree by an aspect in
another source code file. Section 2 details these difficulties.

A promising direction for alleviating the debugging bur-
den is the use of omniscient debuggers, also known as back-
in-time or post-mortem debuggers [7, 9, 10, 11]. They record
the events that occur during the execution of the debugged
program, and then let the user conveniently navigate through
the obtained execution trace. This approach combines the
advantages of log-based debugging –past activity is never
lost– and those of breakpoint-based debugging –easy nav-
igation, step-by-step execution, complete stack inspection.
An omniscient debugger can simulate step-by-step execution
forward and backward, and can immediately answer ques-
tions that would otherwise require a significant effort, like
“At what point was variable x assigned value y ?” or “What
was the state of object o when it was passed as an argument
to the method foo ?”.

This paper shows how omniscient debugging can be ex-
tended so as to embrace aspect-oriented programming. We
first present an analysis of the current situation for de-
bugging aspect-oriented programs, focusing on the case of
AspectJ, since it is the best supported language to date
(Sect. 3). We then describe a set of extensions to the TOD
open source debugger [11] that greatly enhance the under-
standing of the dynamics, and therefore the task of debug-
ging, of aspect-oriented programs (Sect. 4).
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public aspect Foo {
pointcut cond(int x): call(* A.foo(int))
&& target(B) && args(x) && if(x<3);

before(int x): cond(x) {
System.out.println("Bingo: "+x);

} }

Figure 1: Example aspect in AspectJ.

2. AOP AND DEBUGGING
This section briefly introduces the AspectJ [8] language,

and then explains the issues brought by AOP to software
understanding and debugging.

2.1 AspectJ
AspectJ [8] extends the Java language with a new unit

called aspect that permits to implement crosscutting con-
cerns modularly. AspectJ supports two kinds of crosscut-
ting: dynamic crosscutting makes is possible to define addi-
tional behavior to be executed when certain conditions occur
in the base program; static crosscutting makes it possible to
modify the static structure of a program, e.g.adding new
methods or modifying the class hierarchy.

In AspectJ a join point represents a well-defined point in
the execution of a program, such as method call, field write,
exception handler execution, etc. The (static) location of a
join point in the source code is called a join point shadow.
A join point may also specify a dynamically-evaluated con-
dition, called the residue, to determine at runtime whether
a join point shadow actually is the expected join point.

Join points of interest are grouped into a pointcut in order
to specify the places where an aspect actually affects a base
application. Pointcuts are specified using several primitive
pointcut designators (PCDs) which can be combined using
the standard logical operators. For example, the aspect in
Figure 1 defines a pointcut named cond that combines sev-
eral primitive PCDs in order to select calls to method foo

of class A when the actual type of the receiver is B (a sub-
class of A) and the parameter is less than 3; additionally it
exposes the parameter as context information.

Finally, the crosscutting behavior that should be applied
upon occurrences of join points matched by a given point-
cut definition is called an advice, which is a method-like
construction that defines additional behavior to execute at
certain join points. Advices must be explicitly bound to
pointcuts. In the example of Figure 1, an advice is called
before the pointcut cond matches and prints an informative
message using exposed context information.

2.2 Debug model for AOP
The debug model for AOP developed in [4] is helpful in

understanding the difficulties of debugging AO programs.
Of particular interest are a classification of AOP activities,
a comprehensive fault model and a definition of debugging
obliviousness and debugging intimacy.

Classification of AOP activities. The execution of an AO
program consists of different activities. Beyond base code
execution, there is one explicit activity, namely advice ex-
ecution, and several implicit activities used to coordinate
advices with base code [3, 4]: dynamic aspect instantiation
and selection, i.e. determining which aspect instance should

apply; residue evaluation; aspect activation, i.e. gathering
context information and transferring control to the advice;
and bookkeeping for specific features, such as maintaining
a thread-local stack for cflow pointcuts. A much more de-
tailed decomposition is given in [3].

Fault model. The existence of implicit AOP activities in-
creases the difficulty of debugging AO programs because
many instructions are executed at runtime that are not ex-
plicit in the source code. The following are examples of
AOP-specific fault types [4]: (1) incorrect pointcut descrip-
tor, when a pointcut declaration does not have the intended
effect, (2) incorrect aspect composition, when several as-
pects match the same join point and are not executed in
the expected order, (3) adverse changes on base program,
when an aspect alters the functionality of the base program
in such a way that it ceases to work properly, and (4) incor-
rect context exposure, when the context is not exposed as
intended to an advice.

Debugging obliviousness and intimacy. In the context
of debugging AO programs, debugging obliviousness is the
capacity to ignore all AOP-related activities. Conversely,
debugging intimacy is the capacity to observe all activities
in their full details [4]. Instead of considering oblivious-
ness and intimacy as exclusive alternatives, our proposal
describes how to support a range of options between these
two extremes (Section 4). This makes it possible for the
programmer to choose the appropriate level of intimacy de-
pending on the debugging task at hand.

3. STATE OF THE PRACTICE
This section analyzes tools that can be currently used to

debug AspectJ programs, and emphasizes on their limita-
tions with respect to the debug model of Section 2.2.

3.1 The AJDT debugger
A major asset for the use of AspectJ is the AspectJ De-

velopment Tools (AJDT), a set of plugins for the Eclipse
IDE [2]. It provides various features that help understand-
ing AO programs, in particular: (a) markers that show join
point shadows in the base source code and permit to jump
from the shadow to the corresponding pointcut definition
(and vice versa), and (b) high-level visualizations that show
the scattering of join point shadows in whole packages.

Debugging in AJDT is rather ad-hoc, neither fully oblivi-
ous nor fully intimate. When the execution of the debugged
program is halted at a breakpoint, the programmer can use
the traditional step-over and step-into operations.

Step-into provides a certain level of intimacy. Invoking
step-into when an advice is about to be executed actually
steps into the code of the advice, but with an extra step
where the debugger shows the first line of the file that de-
fines the aspect: this actually corresponds to the dynamic
aspect selection AOP activity, but this is not explicit in the
debugger (and rather misleading).

The level of intimacy in the evaluation of residues is how-
ever not consistent. In the pointcut definition of Figure 1
the residue comprises two conditions: (1) the actual type of
the target must be B (a subclass of A), and (2) the argument
x must be less than 3. When invoking step-into in a.foo(2),
only the if condition is stepped into: the condition on the
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These events correspond to the execution of a.foo(2) with
the aspect of Fig. 1. The $2 and $3 represent synthetic local
variables added by the AspectJ compiler.

Figure 2: List of events corresponding to a condi-
tional pointcut.

target is silently stepped over. This is due to the semantics
of the step-into operation of Java: the execution halts when
it reaches another source code line, but the instanceof op-
eration implementing the type test is considered to be on
the same line than the rest of the AOP activities.1

Step-over, on the other hand, provides full obliviousness:
all AOP activities on the current line are ignored, including
advice execution. But there is no way to step into a method
call on the current line while ignoring AOP activities.

3.2 AOP debugging with TOD
TOD [11] is an open source omniscient debugger for Java

integrated in the Eclipse IDE. It is able to debug AspectJ
programs but has no special provisions for handling the
obliviousness/intimacy trade-off.
Figure 2 shows the events that are registered when exe-

cuting a piece of code affected by an aspect. Lines 2 to 6
correspond to AOP-specific activities: lines 2, 3 and 6 cor-
respond to aspect activation, line 4 corresponds to residue
evaluation and line 5 to aspect selection.
Compared to AJDT, TOD provides a bit more debugging

intimacy: lines 2 and 3, that are a part of the context ex-
posure mechanism, are not shown in AJDT; line 5 explicitly
shows a call to aspectOf, while AJDT showed the first line
of the aspect source file. For the residue evaluation, both
TOD and AJDT behave in the same inconsistent way: the
if() condition is shown but the test on the actual type of
the target is not. In the case of TOD the reason is that
only method calls and actions that change the state of the
program are registered; the instanceof operation imple-
menting the type test is not registered.

4. OMNISCIENT DEBUGGING FOR AOP
In this section we describe several extensions to omniscient

debugging that facilitate the debugging of AO programs.
These extensions have been integrated in the TOD open
source omniscient debugger.

4.1 Improving intimacy of residue evaluation
Section 3 showed that the level of intimacy for the eval-

uation of join point residues is not consistent in existing
debugging solutions. In the case of an omniscient debugger

1There is a step-into mode that halts at each bytecode
(STEP MIN instead of STEP LINE), but it is not used by
Eclipse, nor by any other debugger we know of. It would
probably require a disassembled view of the bytecode of the
debugged activity to be useful.

such as TOD, only method calls and actions that modify the
state of the program are registered; tests such as instanceof
are not. While this permits to reduce the number of events
to register, this also hides useful information. In order to
support full debugging intimacy, an omniscient debugger
must register the outcome of all the tests that occur dur-
ing that activity. For an omniscient debugger that captures
events through a customized runtime, the runtime has to be
able to emit events indicating the outcome of tests. For an
omniscient debugger that relies on code instrumentation to
generate events, such as TOD, this requires the insertion of
additional instrumentation to the program: event genera-
tion code is now inserted at locations where an edge of the
control dependence graph of the program is traversed [15].
Figures 3c and 3d show how full intimacy in residue evalu-
ation adds details to the event list of Figure 2.

4.2 Identification of AOP activities
In aspect language implementations, instructions that rep-

resent AOP activities are woven with base code instructions
so as to provide the semantics of aspects. This weaving
process can be invasive (the base program is modified to in-
clude those instructions, either at the source level or at the
binary level), or noninvasive (AOP-specific instructions are
performed by an AOP-aware runtime) [4]. In both cases it
is possible to determine at runtime the AOP activity corre-
sponding to each executed instruction, as well as the point-
cut corresponding to each AOP-specific instruction. The
case of noninvasive weaving is the easiest: the runtime can
be extended to provide the required information, as it is
fully responsible for implementing AOP semantics.
Because the current implementations of AspectJ use in-

vasive weaving, we use a tagging scheme [3] to identify AOP
activities. Each instruction is given, at weave time, a tag
that indicates its activity, as well as the identifier of the
corresponding pointcut (for AOP-specific instructions). Ad-
ditionally, runtime propagation rules are defined to ensure,
for example, that code from the base program is considered
as base code when called directly from the base program,
but as advice code when called from an advice. In this way
it is always possible to determine the activity to which the
currently-executing instruction belongs.
Once the activity of each instruction is identified, it is pos-

sible to tag all the events registered by the omniscient debug-
ger with the corresponding activity and pointcut identifier
where applicable. This enables debugging obliviousness, as
events tagged as AOP-specific can be concealed (Fig. 3a).
Moreover this also improves intimacy, as the role of each
event can be made explicit (Fig. 3d).

4.3 Obliviousness/intimacy trade-off
In Sections 4.1 and 4.2 we showed how full intimacy and

full obliviousness can be achieved. However an AOP debug-
ger should permit to choose the appropriate level of detail
for the task at hand. Figure 3 shows increasing level of detail
for the same sequence of events, in our extension of TOD.
If obliviousness is required, sequences of AOP-related events

between two base code events are collapsed into one line2

(Fig. 3a). This line provides a visual summary of the ac-
tivities of the collapsed sequence: the programmer therefore
knows at a glance that, before the call to foo a conditional

2A completely oblivious debugger would not even show that
line, but it seems rather counterproductive.
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In (a) debugging obliviousness is obtained by collapsing the events that correspond to AOP-related activities into a single
line. Full intimacy is shown in (d), and two intermediate levels of intimacy are shown in (b) and (c). Each icon represents a
kind of AOP activity.

Figure 3: The obliviousness/intimacy trade-off in an event list.

Grey bars show the density of events; the superimposed col-
ored boxes indicate times at which AOP activities occurred.

Figure 4: Aspect mural.

pointcut was evaluated, the advice was indeed called and
some context was exposed.
If intimacy is required, the sequence can be gradually ex-

panded to show the details of the AOP activities (Fig. 3b
to 3d). First only the event that corresponds to the advice
call is shown; this permits to easily step into the execution
trace of the advice in the case where no fault in AOP-specific
activities is suspected. Otherwise the details of the implicit
AOP activities can be revealed: for instance if the advice
was erroneously executed, residue evaluation events can be
shown (Fig. 3c). If maximum detail is needed, it is possi-
ble to show the complete sequence of events (Fig. 3d). The
icons in front of each event help understanding the AOP
activities.

4.4 Bird’s eye views
As an omniscient debugger registers the whole history of

the debugged program, it can provide certain summarized
views on its execution. These views are useful to abstract
away from the details of execution events. For example
TOD provides murals that show the evolution of the density
over time of events that meet certain criteria [11]. With the
event tagging scheme mentioned in Sect. 4.2, our extension
of TOD provides aspect murals that show the activity of
an aspect during the execution of the program. Such tem-
poral views of AOP activity are the dynamic counterpart
of the static crosscutting views of AJDT (Sect. 3.1). They
are particularly helpful in understanding the interplay be-
tween aspects and base code, as well as between different
aspects. Figure 4 shows an aspect mural where two aspects

History of the pointcut of Fig. 1. The residue column shows
the tests that passed and those that did not. Clicking on
the operation shows the corresponding event in its context.

Figure 5: Pointcut history view (mock-up).

are selected and their activity is represented by two distinct
colors. It is also possible to show the activity of aspects on
methods of a single class, or of a single instance.
Another interesting view (currently under development)

shows the execution history of the join point shadows of a
particular pointcut. Pointcut history views are particularly
useful for pointcuts with a residue, as they show which oc-
currences of join points matched and which ones did not. It
is even possible to examine in details the individual residue
conditions, facilitating the resolution of the incorrect point-
cut descriptor AOP fault (Sect. 2.2). On Figure 5, on the
second line the condition on the type of the target was not
verified, shortcutting further evaluations; on the last line the
condition on the argument was not verified. Note that while
it is easy to determine the number of tests that passed dur-
ing the residue evaluation, determining the precise pointcut
condition corresponding to each test requires a non-trivial
static analysis (not tackled yet).

5. RELATED WORK
The comprehensive debug model for AOP presented in [4]

has been lengthy discussed in this paper. The model also
presents topics that are orthogonal to omniscient debugging
such as the ability to use edit-and-continue debugging, or to
introduce new aspects at runtime. It introduces Wicca, a
dynamic AOP system for the C# language, which excels at
debugging intimacy but lacks debugging obliviousness.
Static analysis is an important tool for program under-

standing. The whole execution traces presented in [15] of-
fer a compact yet comprehensive representation of program
activity and permit to perform advanced semantic queries,
such as dynamic slices, that identify the parts of a program
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that directly or indirectly affect the value of a given variable
at a given program point. A solution for computing slices
of AO programs is presented in [16].

Using omniscient debugging for AOP was first explored
in [12]. Their approach is based on slicing and therefore fo-
cuses on how to delimit regions of interest in the source code
for a particular debugging task. Our approach in contrast
focuses more on letting the programmer explore the details
of the activities related to aspects, at the level of runtime
events; abstraction on the execution trace is provided by
summary views (aspect murals and pointcut history). Com-
bining both approaches seems very promising.

We used TOD [11] for our analysis of the state of the
practice. TOD is a scalable omniscient debugger for Java
that can cope with huge amounts of events. It also offers
a flexible trace model that can be easily extended for our
purposes. The first omniscient debugger for Java, presented
in [9], does not provide such scalability but has interesting
features such as the ability to resume execution from an
arbitrary point in time. ZStep95 [10] is a reversible stepper
for Lisp that provide animated views of data structures in
addition to the standard features of an omniscient debugger.
None of these debuggers have special support for AOP.

6. CONCLUSION
In order to ease the debugging of aspect-oriented pro-

grams, we propose a number of extensions to omniscient
debuggers: collapsable list of events to hide unwanted de-
tails of AOP activities, activity icons to help understand
AOP activities, more thorough event model for observing
the details of residue evaluation, and high-level views such
as aspect murals to help understand the interplay between
aspects and base code. These extensions, implemented on
TOD, are designed to address issues observed in both tra-
ditional breakpoint-based debuggers and current omniscient
debuggers when debugging programs with aspects. Improv-
ing the debugging experience is crucial for the widespread
acceptance of AOP in industry.

We are currently performing a systematic evaluation of
the attainable intimacy for various AspectJ features not dis-
cussed here such as around advice and control-flow point-
cuts. Addressing the obliviousness/intimacy trade-off for
intertype declarations would also be of great value, con-
sidering the importance of structural aspect mechanisms in
practice [1].
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