
Contextual Values

Éric Tanter ∗

PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile – Santiago, Chile

etanter@dcc.uchile.cl

Abstract
Context-oriented programming proposes to treat execution context
explicitly and to provide means for context-dependent adaptation
at runtime. There are many mechanisms that can be used to make
either variable bindings or application code adapt dynamically, like
dynamically-scoped variables, dynamic layer activation, and con-
textual dispatch. There are no means however, to make actual val-
ues be context-dependent. This means that side effects engendered
by dynamically-activated adaptations are potentially global. We
propose contextual values: values that actually depend on the con-
text in which they are looked at and modified. We explore how con-
textual values can be provided, either as a simple library or directly
into the language through different designs, for which we provide
the operational semantics in the form of Scheme interpreters. Be-
ing able to scope side effects to certain contexts is a step forward
for context-oriented programming, and can have interesting appli-
cations in other areas like security and dynamic software evolution.

1. Introduction
Context awareness [1, 8] is the ability of a program to behave
differently depending on its surrounding execution context. The
need for this context-dependent behavior has been recognized in
many areas, from ubiquitous computing [29], self-adaptive [18] and
autonomic systems [14], to more standard business applications, for
instance where personalization is a key concern. With traditional
programming techniques and infrastructures, addressing context
awareness requires the development of unnecessarily complex and
tangled solutions.

Several approaches to address context awareness have been
proposed at different levels, including middleware [3, 4, 20] and
programming languages [7, 13, 23, 26]. Taking context into ac-
count at the level of the programming language allows for simpler
development, evolution and reuse of software [26]. For instance,
ContextL [7] introduces several linguistic mechanisms to support
context-dependent behavior, by allowing code structures (classes)
to be context-dependent: a class can be defined in several layers,
and layers can be dynamically activated. At a lower level of ab-

∗ Partially financed by the Millenium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile, and FONDECYT project 11060493.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS’08 July 8, 2008, Paphos, Cyprus
Copyright c© 2008 ACM ISBN 978-1-60558-270-2/08/07. . . $5.00

straction, dynamic binding mechanisms, like special variables in
Common Lisp [21], allow variable bindings to be redefined for cer-
tain dynamic extents.

We observe that none of the proposals for context-oriented
linguistic constructs makes it possible for values to be context-
dependent. As a result, any side effect that occurs in a given context
cannot easily be made local to that context: it is visible from all the
parts of the system that have access to the value, independently of
their execution context. As far as we have been able to determine,
the only kind of context-dependent value that has been identified,
and is indeed widely used, is thread-local values: values that are
specific to the executing thread.

This paper proposes contextual values, as a simple generaliza-
tion of thread-local values to any execution context information.
Starting from this generalization in the form of explicit contextual
values provided as a library (Section 2), we proceed to explore ac-
tual language support for contextual values (Section 3). Finally, we
examine a new language construct, based on contextual values, for
systematically scoping side effects performed in certain regions of
a program execution (Section 4). We describe the operational se-
mantics of our proposals by extending a small Scheme interpreter.
We discuss related proposals in Section 5, showing that, by focus-
ing on the issue of shared state, contextual values are indeed com-
plementary to existing approaches for context-dependent behavior
adaptation. Section 6 concludes.

2. Explicit Contextual Values
In their simplest form, contextual values are a trivial generalization
of thread-local values. We first give a brief recall of what thread
locals are, and then discuss their generalization.

2.1 Thread-local Values
The most well-known kind of contextual values are thread-local
values: values that are specific to the executing thread. More pre-
cisely, a thread local is a cell whose content is, when de-referenced,
specific to the executing thread. Thus it may contain different val-
ues for different threads. Most languages with concurrency support
provide thread-local values of some sort, including POSIX threads,
C++ libraries, C# thread static attributes, Java, Python, Delphi, var-
ious Scheme, Lisp, and Smalltalk dialects, and more.

For instance, in Java a thread local is an instance of the
ThreadLocal class, and its content is accessed with get and set
methods:

ThreadLocal<Integer> counter = new ThreadLocal<Integer>();
counter.set(1); int c = counter.get();

The initial state of the thread local is specified in the method
initialValue that can be redefined in subclasses. PLT Scheme [10]
adopts a slightly different design, where a thread cell is created with
a default value that is used for all existing threads:

(define counter (make-thread-cell 0))
(thread-cell-set! counter 1)
(thread-cell-ref counter)

In addition, in PLT Scheme the value of a thread cell can be
preserved, meaning that when a new thread is created, the current
value of the cell for the creator thread is used as the initial value for
the new thread.

Beyond these differences mostly related to initialization, the
essence of thread-local values is the same. A straightforward im-
plementation of a thread local is as a wrapper around a table that
associates thread identifiers to values. A getter does a look up in
the table using the current thread identifier as key, while a setter
updates the table.

2.2 Contextual Values
In essence, our proposal boils down to a trivial generalization of
the idea of thread-local values. Considering that the current thread
is but one kind of execution context information, we propose to
generalize the idea to any kind of context.

From a programming language point of view, the general under-
standing of context is as any information that is computationally
accessible. In this light, a contextual value is like a thread local,
except that any computationally-accessible value can be used to
discriminate amongst possible values, not only the current thread.

For instance, let us create a contextual value in Scheme, bound
to the variable background-color; the value is black by default,
and its context function returns the value bound to user:

(define background-color
(make-cv-init (lambda () user) black))

For a certain context –here, a certain user name–, any side effect
on background-color is effective:

(define user "Totoro")
(cv-set! background-color red)
(cv-ref background-color) ;;--> red

Conversely, if the context changes –that is, if the user changes–,
the previous side effect is not effective:

(set! user "Bilbo")
(cv-ref background-color) ;;--> black

2.2.1 Supporting contextual values
Not surprisingly, introducing contextual values in Scheme, Java, or
any language with structured data types, is not very challenging. A
contextual value consists of a context function ctx of no arguments,
and a value mapping vals, mapping possible values of the context
function to actual values. vals is a function that returns a default
value whenever there is no explicit mapping for a given context:

cv = 〈ctx, vals〉
Setting a contextual value means applying the context function

ctx, and using the returned value as a key to update the definition
of vals (either by creating a new mapping or by updating an exist-
ing one). Similarly, getting the actual value of a contextual value
means applying ctx and passing the returned value to vals.

Listing 1 presents the definition of contextual values in PLT Scheme.
define-struct defines a structure of three fields: the context
function, the value mappings (an association list), and the default
value. The structure definition generates accessor functions, like
cv-ctx to access the context function. extend-vals (the code of
which is omitted) extends the association list with a new mapping.
The constructor make-cv-init is a convenience function to create
a contextual value initialized with the mapping of the current value
of the context function to the given default value.

Listing 1 Definition of contextual values in PLT Scheme.
;; data type definition
(define-struct cv (ctx vals default))

;; read a cv
(define (cv-ref cv)

(let ((key ((cv-ctx cv))))
(let ((val (assoc key (cv-vals cv))))

(if val (cdr val) (cv-default cv)))))

;; set a cv
(define (cv-set! cv nval)

(let ((key ((cv-ctx cv))))
(let ((val (assoc key (cv-vals cv))))

(if val (set-cdr! val nval)
(extend-vals cv key nval)))))

;; simplified constructor
(define (make-cv-init ctx val)

(make-cv ctx (list (cons (ctx) val)) val))

Listing 2 Thread-local values as contextual values.
;; constructor of thread local
(define (make-tl val)

(make-cv-init current-thread val)))

;; accessors
(define tl-ref cv-ref)
(define tl-set! cv-set!)

Listing 3 Playing with thread locals.
(define counter (make-tl 0))
(tl-ref counter) ;; --> 0

(thread (lambda ()
(tl-set! counter 42)
(let loop ()

(display (tl-ref counter)) ;; --> 42 for ever
(loop))))

(tl-ref counter) ;; --> 0
(tl-set! counter 1)
(tl-ref counter) ;; --> 1

2.2.2 Expressing thread-local values
Providing a simple thread cell library on top of contextual val-
ues is trivial: a thread cell is a contextual value whose context
function is the primitive used to obtain the current thread. In Java
this is done using Thread.currentThread, and in PLT Scheme,
current-thread. Listing 2 shows the implementation of a thread
cell library using contextual values. Listing 3 illustrates the use of
this library.

2.2.3 Contextual values and dynamic scope
To further illustrate the kind of applications of contextual values,
we show their use in another toy example, where we make use of
dynamic bindings as supported by fluid-let in Scheme, similar
to special variables in Common Lisp [21]: a variable can be re-
bound for a given dynamic extent.

Listing 4 demonstrates how to take advantage of dynamic bind-
ing by defining a contextual value msg whose context function re-
turns the value of a language variable. In turn, we use dynamic
bindings to alter in certain dynamic extents the binding of this vari-

Listing 4 Playing with contextual values.
(define language "EN")

;; contextual value msg
(define msg (make-cv-init (lambda () language) "hello"))

;; function using contextual value
(define show-message

(lambda () (display (cv-ref msg))))

;; init for different contexts
(fluid-let ((language "SP"))

(cv-set! msg "hola"))
(fluid-let ((language "FR"))

(cv-set! msg "bonjour"))

(show-message) ;;--> hello

(set! language "SP")
(fluid-let ((language "FR"))

(show-message) ;; --> bonjour

(show-message) ;;--> hola

language

EN
SP
FR

_

"hello"
"hola"
"bonjour"

msg

Figure 1. A contextual value holding different values depending
on the language context.

able. For instance, we initialize msg in different language contexts
using fluid-let. Note that the side effect on the contextual value
is visible only when the execution is again in a context for which
language is bound to the value it had when the side effect was
performed.

This illustrates an important difference between dynamic bind-
ing and contextual values. While a dynamic rebinding is only valid
for the extent of the execution of the nested expression, the assign-
ment of a contextual value survives this extent: it is only dependent
on the outcome of the context function. Fig. 1 illustrates the bind-
ing between msg and the contextual value. The empty box refers to
the default value.

2.3 Issues: Obliviousness and Shared State
The version of contextual values we have presented in this section
follows the same design principle as thread cells in Scheme or
thread locals in Java: contextual values are provided by means of
a library. We refer to this design as providing explicit contextual
values. The programming language itself has no notion whatsoever
of what a contextual value is. Indeed, the name of contextual (or
thread local) values is misleading, because in effect, the value is a
container, and is global. The container itself is just smart enough to
implement context dependence when its content is accessed.

While this explicit approach is simple to implement and man-
age, it presents two important limitations. First, it forces program-
mers to explicitly manipulate the containers, with accessors like
cv-ref and cv-set!. As a consequence, if the decision is taken
to make a certain value contextual, all the parts of the program that
manipulate it must be updated to use these explicit operations. In

Listing 5 Contextual values in the language.
(define language "EN")
;; formatter :: val -> string
(define file-formatter (cv (lambda () language)

(lambda (value) ...)))

;;--rest of the program, unaware of contextual value--

;; printing library function
(define (print-to-file path val)

(write-file (open-file path)
(file-formatter val))) ;; standard access

;;...in a spanish module, where language is "SP"...
(set! file-formatter

(lambda (valor) ...)) ;; standard assignment

other words, a given module cannot be oblivious to the fact that it
is manipulating a value that is contextual.

A second consequence is that, being a container, a contextual
value becomes a means to share mutable state between procedures
in a call-by-value language. Indeed, passing a container, such as a
box, a list, a vector or any other mutable data structure, as parameter
in a call-by-value language ensures that mutation of the state of
the container done by the callee is visible at the caller site. It
seems rather odd to couple the notions of shared mutable state and
contextual values. The essence of contextual values is, after all, that
the actual value depends on the context in which it is looked at.

The rest of this paper explores language support for contextual
values, making it possible to implicitly and transparently use con-
textual values, while preserving call-by-value semantics.

3. Implicit Contextual Values
We begin our exploration of language support for contextual val-
ues by introducing support for uniform access and assignment of
variables, regardless of whether they refer to normal or contextual
values. Denoting which values are to be treated as contextual is
still done explicitly; only the use of these values is oblivious to con-
text dependence. After a brief program example, we explain how to
implement such a language by first exposing a small Scheme-like
language, its interpreter, and how to extend it to support implicit
contextual values.

3.1 Programming with Implicit Contextual Values
A programmer has to denote explicitly the values that must be
treated as contextual, by using a cv expression that specifies the
context function and default value (and possibly initial value map-
pings). This corresponds to the constructor we have seen previously
with explicit contextual values.

The difference is now that the language processor itself takes
care of the semantics of contextual values. This means that there are
no syntactic differences in accessing or assigning a value, whether
it is a standard value or a contextual one: explicit accessors like
cv-ref and cv-set! have disappeared. Listing 5 illustrates a
context-dependent behavior of a printing function, where the con-
textual value first referred to as file-formatter is read and set in
various parts of the program like any other value. Both the printing
library function and the code corresponding to a spanish module
are oblivious to the fact that file-formatter is contextual.

3.2 Working out the semantics
Introducing implicit contextual values in the language actually
raises a number of issues, all related to the fact that from the view-
point of the programmer, their use is transparent.

language

EN
SP

_

file-formatter

accessibility

#f
#t

_

special
formatter

standard
formatter

en-formatter

spanish
formatter

Figure 2. Nesting of contextual values.

3.2.1 Nested contextual values
With explicit contextual values, nested contextual values are also
explicitly managed: if the value of a contextual value is another
contextual value, then the client has to explicitly cv-ref it. With
implicit contextual values, this can no longer be the case. Because
contextual values are not visible from the language point of view,
the interpreter itself must take care of recursively reducing a con-
textual value to an actual value whenever needed.

For instance, suppose that instead of using an anonymous de-
fault formatter in Listing 5, we use the English formatter bound to
the variable en-formatter. It may be the case that this format-
ter is already a contextual value, e.g. such that, depending on an
“accessibility” context, the formatter is either a standard one, or a
special formatter that uses larger symbols.

The definition of file-formatter as a contextual value de-
pending on the language context results in nested contextual val-
ues; we say that file-formatter is bound to a compound con-
textual value (Figure 2). Therefore, obtaining the actual value of
file-formatter at a given point in time implies first dispatching
based on the language context, and if the current language context
is English, then a second dispatch must be performed, based on the
accessibility context. Nesting is clearly not commutative.

3.2.2 Procedural abstraction boundaries
A call-by-value language ensures that assignments to variables in
a called procedure do not affect variable bindings in the caller
context. Avoid such aliasing of values is an important point to
ensure good abstraction boundaries between units of modularity.
If the callee is intended to mutate a value, then it should consume a
container data structure. This is then part of the explicit interface
between the caller and the callee. Supporting contextual values
implicitly in the language requires the call-by-value semantics to
be preserved, even for contextual values.

For instance, with explicit contextual values, the mutation done
in the foo function is visible for the caller, because the contextual
value is a container:

(define (foo x) (cv-set! x 3))
(let ((a (make-cv ctx 10)))

(foo a)
(cv-ref a)) --> 3

Conversely, with implicit contextual values, the assignment
ought not affect the value of a at the caller site:

(define (foo x) (set! x 3))
(let ((a (cv ctx 10)))

(foo a)
a) --> 10

3.2.3 Call-by-“value”?
In a call-by-value language, the arguments to a function are, as the
name suggests, reduced to values before being bound in the envi-
ronment used to evaluate the function body. A naive implementa-
tion of implicit contextual values may overlook this and result in a
language where as soon as a contextual value is passed as parame-
ter, it is reduced to an actual value and is therefore not contextual
anymore. This would –least to say– greatly reduce the interest of
contextual values.

For instance, going back to the example of Listing 5, suppose
that the print-to-file function is defined in a lexical scope
where file-formatter is not bound; rather it takes the formatter
to apply as a parameter:

(define (print-to-file path val formatter)
(write-file (open-file path)

(formatter val)))

If a context-dependent formatter is passed as parameter to this
function, possibly through different intermediate steps, potentially
distant in time, we want to be sure that the actual formatter used
is determined by the context at the time the formatter is effectively
applied.

3.3 Interpretation of Contextual Values
We now dive into the details of the semantics of implicit contextual
values by exposing their interpretation. We do by first introducing a
small Scheme language and its traditional interpretation (Listing 6).
Then, we extend it with implicit contextual values (Listing 7),
explaining how we address the different semantic issues raised in
the previous section.

3.3.1 A small Scheme and its interpretation
The small Scheme language we will extend is very similar to the
core Scheme with mutation used by Matthews and Findler [17]. It
supports literals (numbers, strings, booleans), variables, sequenc-
ing, if, let, arbitrary arity procedures (either primitives or first-
class anonymous functions), and, of course, assignment.

<expr> ::= <lit>
| <id>
| (lambda ({<id>}*) {<expr>}*)
| (if <expr> <expr> <expr>)
| (let ({(<id> <expr>)}*) {<expr>}*)
| (<expr> {<expr>}*)
| (<prim> {<expr>}*)
| (set! <id> <expr>)

The interpreter is written in the classical environment-passing
style [11]. The eval procedure receives both the expression to
evaluate and the lexical environment, and is structured as a type
case on the expression to evaluate. The core of this interpreter is
given on Listing 6 for reference. We do not give the interpretation
of let expressions as they are equivalent to immediate application
of an anonymous function.

The important parts for this work are the way variable and as-
signment expressions are interpreted, as well as parameter passing
in function application. In order to allow mutation of variables, the
environment contains bindings of variables (symbols) to addresses
in the store, where value reside. These addresses are represented
as structures called references. The interface of this data type is
the function deref that, given a reference, returns the associated
value; and the function setref! that, given a reference and a value,
changes the reference so that it refers to the given value.

The use of references can be seen on Listing 6. The function
env-lookup looks up an identifier in the environment, and re-
turns a reference to the associated value. A variable expression

Listing 6 Scheme interpreter of a small Scheme-like language with mutation.
;; evaluate expression exp in lexical environment env
(define (eval exp env)

(cond ((lit-exp? exp) (lit-exp-value exp))
((lambda-exp? exp) (make-closure (lambda-exp-params exp) (lambda-exp-body exp) env))
((prim-exp? exp) (let ((args (eval-args (prim-exp-args exp) env))) (apply (prim-exp-prim exp) args)))
((if-exp? exp) (if (eval (if-exp-test exp) env) (eval (if-exp-then exp) env) (eval (if-exp-else exp) env)))
((var-exp? exp) (deref (env-lookup (var-exp-name exp) env)))
((set!-exp? exp) (setref! (env-lookup (set!-exp-name exp) env) (eval (set!-exp-nval exp) env)))
((app-exp? exp) (let* ((cl (eval (app-exp-fun exp) env))

(args (eval-args (app-exp-args exp) env))
(env (extend-env (closure-params cl) args (closure-env cl))))

(eval-body (closure-body cl) env)))))
;; data type for values
(define-struct value ())
(define-struct (closure value) (params body env)) ;; only one variant, closures

(var-exp) is interpreted by de-referencing the returned reference;
similarly, an assignment (set!-exp) sets the referenced value to
the new value.

When a function is applied (app-exp), its body is evaluated in
an environment that extends the definition-time environment of the
function with the bindings of the formal to the actual parameters.
The extended environment is obtained by applying extend-env.
To ensure call-by-value semantics, this function creates new store
cells to hold the values of the actual parameters (hence avoiding
aliasing).1

3.3.2 Introducing contextual values
To extend the language with contextual values, the only syntactic
extension is the new expression to define a contextual value:

<expr> ::= ... | (cv <expr> <expr>)

Internally, the interpreter must now manipulate contextual val-
ues as a new kind of values, as shown on Listing 7. The data type
definition is the same as that of explicit contextual values (List-
ing 1). Interpreting a cv expression simply instantiates the a contex-
tual value structure, evaluating the context function and the default
value (and initial mappings if provided).

3.3.3 Evaluating a variable
Contextual values, as all values, live on the store. This means
that when looking up a variable in the environment, we can get a
reference to a contextual value. As discussed in Section 3.2.3, when
we pass a contextual value as parameter, we do not want to reduce
it to an actual value: it should remain contextual. So the question
arises of when a contextual value should in fact be reduced.

This issue is reminiscent of lazy evaluation: in a language with
lazy evaluation like Haskell, argument expressions are not evalu-
ated until they are really needed. Instead, expression closures are
passed as arguments (to preserve static scoping). The precise points
at which expression closures are reduced to actual values are called
the strictness points of the language [16].

Implicit contextual values deserve a similar treatment. Interest-
ingly, the strictness points of the interpreter with contextual values
include those of a typical language with lazy evaluation: top-level
evaluation, arguments of a primitive application, test part of an if,
and function position of a function application.

Therefore, to reduce contextual values to actual values, we use
a strictness function. To properly deal with compound contextual

1 For more details, we refer the reader to the reference textbook [11] and
our implementations at: http://pleiad.dcc.uchile.cl/research/scope

values, strict recursively applies cv-val until a non-contextual
value is reached:

;; strict :: value -> non-contextual value
(define (strict val)

(if (cv? val)
(strict (deref (cv-val val)))
val))

The cv-val procedure in the interpreter is essentially the same
as that of Listing 1: it determines the corresponding value depend-
ing on the outcome of the context function. The only difference is
that it now deals with store references (as in the rest of the evalua-
tor) and not association lists.

Listing 7 highlights the particular points where strict is ap-
plied. First, we add a top-level evaluation function, eval-prog: it
is a strictness point because users are not interested in getting back
a contextual value structure as the result of the execution of a pro-
gram. For primitive application, we use a new strict-eval-args
function, that evaluates strictly each argument. This is because a
primitive function, like + or <, does not know how to deal with con-
textual values. Similarly, the result of the evaluation of the test part
of an if must be reduced, for the interpreter to be able to determine
which branch to evaluate. Finally, function application requires the
function expression to be reduced to an actual value (a closure) in
order to proceed.

3.3.4 Assignments
Assignments must now discriminate on the kind of value that is
referenced. To do so, in the interpreter we call a setval! function
instead of using setref! directly:

(define (setval! r nval)
(let ((val (deref r)))

(if (cv? val)
(cv-update! val nval)
(setref! r nval))))

If the referenced value is non-contextual, the reference is simply
set. If the referenced value is contextual, it is updated with the new
value. Updating a contextual value means determining in which
context the execution currently is; if an existing value is present
for this context, replace it, otherwise, add a new binding for the new
context value. Note that to properly deal with compound contextual
values, cv-update! recursively applies all context functions in
order to reach either a normal value or no value at all.

Listing 7 Scheme interpreter of a small Scheme-like language with implicit contextual values. (changes highlighted)

;; top-level evaluation
(define (eval-prog exp)

(strict (eval exp (empty-env))))

;; evaluate expression exp in lexical environment env
(define (eval exp env)

(cond ((lit-exp? exp) ...)
((lambda-exp? exp) ...)

((cv-exp? exp) (make-cv (eval (cv-exp-ctx exp) env ...))

((prim-exp? exp) (let ((args (strict-eval-args (prim-exp-args exp) env))) (apply (prim-exp-prim exp) args)))

((if-exp? exp) (if (strict (eval (if-exp-test exp) env))

(eval (if-exp-then exp) env)
(eval (if-exp-else exp) env)))

((var-exp? exp) (deref (env-lookup (var-exp-name exp) env)))

((set!-exp? exp) (setval! (env-lookup (set!-exp-name exp) env) (eval (set!-exp-nval exp) env)))

((app-exp? exp) (let* ((cl (strict (eval (app-exp-fun exp) env))

(args (eval-args (app-exp-args exp) env))

(env (extend-env (closure-params cl) (by-val args) (closure-env cl))))

(eval-body (closure-body cl) env)))))
;; data type for values
(define-struct value ())
(define-struct (closure value) (params body env))

(define-struct (cv value) (ctx vals default))

3.3.5 Applying the context function
A difference between explicit and implicit contextual values lies in
the way the context function is applied. In Listing 1 we simply ap-
ply the function held in the contextual value structure: ((cv-ctx
cv)). Moving contextual values into the interpreter makes this ap-
proach incorrect. The context function in the structure represents a
function of the base level, which must be evaluated at the base level.
The interpreter must therefore evaluate the function syntactically:

(define (cv-evalctx cv)
(let ((thunk (strict (cv-ctx cv))))

(strict (eval-body (closure-body thunk)
(closure-env thunk)))))

Nothing prevents a context function to be itself a contextual
value, so cv-evalctx reduces the value of the context function
using strict, in order to be able to evaluate its body. Similarly,
since the value returned by cv-evalctx is immediately used to
look up in the value mapping of a contextual value, it needs to
be an actual value. This is why the result of the context function
application is also reduced2.

3.3.6 Contextual values and parameter passing
The small Scheme language we consider has a call-by-value
semantics, as explained in Section 3.3.1. This is ensured by
extend-env, which allocates fresh store locations for holding the
values of the arguments passed to a function. We have explained
in Section 3.2.3 that we want to maintain call-by-value semantics
even for implicit contextual values.

However, in the interpreter, contextual values are containers.
So a naive implementation of parameter passing will overlook this
fact and result in a language with call-by-reference semantics for

2 The simple implementation of explicit contextual values of Listing 1 does
not take into account the cases where the context function or its returned
values are contextual.

contextual values (while keeping call-by-value semantics for actual
values). To address this issue, we need to ensure that upon passing a
contextual value as parameter, the structure of the contextual value
is not shared between the caller and callee sites.

In other words, we need to deep copy the structure of a con-
textual value: the actual values, however, do not have to be copied.
Considering a contextual value as a particular kind of tree, the copy
operation consists in a deep copy of the internal nodes of the tree,
and shallow copy of the outer nodes, hence sharing the leaves. This
operation is performed by the by-val function, which is called
when extending the definition-time environment of a function with
bindings for the parameters (Listing 7).

3.4 Discussion
The presented language design adopts contextual values as real
values in their own right from the point of view of the interpreter.
This allows base programs to manipulate values without having to
be aware that they are contextual. This mechanism therefore has
the advantage to allow the provision of a restricted power over
mutation to libraries and external programs, such that some of
their side effects are restricted to a given context. However, the
design still requires contextual values to be explicitly designated
as such when they are first defined. The next section explores a
more radical integration by which side effects on previously non-
contextual values can be made local to certain contexts.

4. Implicit Scoping of Side Effects
This section explores a different approach to the integration of con-
textual values in a programming language: introducing a language
construct for scoping all the side effects that occur in a given dy-
namic extent to a certain context. This can be used for instance to
introduce an untrusted component in a system and ensure that it
does not produce side effects visible to the rest of the system.

4.1 A Language Construct for Scoped Assignments
We introduce a new construct to specify that side effects occurring
during the execution of some expressions should be scoped accord-
ing to a given context specification.

(scoped ctx-function exprs)

We say that the scoped construct defines a scoped assignment
region. The boundaries of the region are dynamic since the region
is the dynamic extent of the scoped block. Furthermore, a scoped
assignment region is parametrized by a context function. The in-
tuitive semantics is that, during the execution of exprs, all side
effects are treated in a way that makes them local to the context
specified by ctx-function. Internally, this means that all mutated
values are turned into contextual values. If a value is already con-
textual, it is refined through nesting of contextual values.

Consider a simple operating system API for untrusted client
programs. We can make sure that a client program will have no
side effects visible to other users of the system:

(define (run-program p)
(scoped current-user

(load-n-run p)))

Here we assume that current-user is a function that returns
the user that is currently requesting to run a program.

This toy example shows the benefit of the proposed construct: as
a provider of the API with run-program, we have no idea of which
accessible values (e.g. system properties) are not only read by the
user program, but also mutated. If we were to ensure isolation of
these side effects with explicit contextual values, we would have
to explicitly define these values as contextual. In addition, it would
be necessary to make sure the untrusted client program actually
knows that these values are containers that should be accessed
by means of accessor functions. Otherwise, any direct assignment
would ruin the design. Using implicit contextual values, we would
avoid the pitfalls of explicit contextual values, but we would still
have to anticipate which values have to be defined as contextual.
Conversely, here all values that are side effected by the program,
and only those, are automatically made contextual, on a by-need
basis.

4.2 Working out the Semantics
The introduction of the scoped construct raises a number of se-
mantic issues that deserve special attention. First, if every single
assignment in a scoped region is made contextual, mutating a value
used in the computation of the context function of the region may
potentially yield an infinite regression. Second, since scoped is an
expression, scoped regions can naturally be defined in sequence,
as well as nested (if not syntactically, at least dynamically). Thus
we need to clarify the semantics of assignments in successive and
nested regions. We now analyze these issues in more details using
simple examples.

4.2.1 Avoiding infinite regression
Consider the following program:

(let ((user "Bilbo") (counter 0))
(let ((user-ctx (lambda () user)))

(scoped user-ctx
(set! user "Totoro")
(set! counter 1)
counter))) ;; infinite loop

The context function user-ctx is used to scope side effects in a
region of the program that happens to do an assignment to both the
user and counter variables. These side-effects must therefore be

scoped by making the associated values contextual. To this end, the
actual value of counter must be determined: applying user-ctx
should yield the value used to lookup its value for the current
context. In this process the value associated to the user variable is
needed, but it is also a contextual value, which happens to depend
on... user-ctx! This results in an infinite loop.

This highlights that any value used in the evaluation of a con-
text function application had better not be a contextual value on the
same context function. Beyond throwing an error when this situ-
ation is detected, a possible approach is to define some values as
protected: protected values can never be made contextual implic-
itly, their mutation is visible to all the referents of the value.

An alternative to explicitly denoting each and every protected
value consists in providing a construct to delimit a protected region
in the store, such that all values in that region are protected. While
both designs are entirely legitimate, we opt for the latter. To do
that, we introduce a with-scope construct that activates scoped
assignments for the dynamic extent of its inner block, ensuring that
all previously-defined values are protected during its execution:

(let ((user "Bilbo")) (let ((user-ctx (lambda () user)))
(with-scope ;; scoped assignments from here only

(let ((counter 0))
(scoped user-ctx

(set! user "Totoro")
(set! counter 1)
counter))))) ;;--> 1

The values associated to user and user-ctx are defined above
the with-scope expression, so they are protected from being made
contextual by any assignment performed in any scoped region
below. Note that in order to ensure that the value of counter can be
made contextual, we moved its definition inside the with-scope
expression. with-scope expressions can be nested, and placed
inside scoped regions as well. The semantics remains the same:
values defined prior to it are protected from being made contextual
during the dynamic extent of the body.

This design assumes a certain discipline according to which
values that are used in determining a given context are defined prior
to other values that are deemed to be dependent on this context.

4.2.2 Sequence of scoped regions
We now analyze the issues associated with multiple scoped regions,
first considering sequences of non-nested scoped regions. Consider
the following example:

(let ((counter 0))
...
(scoped current-thread

(set! counter (inc counter)))
(scoped current-user

(set! counter 100))
...
counter)

After the first assignment, the value bound to counter is a
thread-contextual value, with value 1 for the thread that executed
the assignment (t1) and 0 otherwise. The second assignment makes
the counter value be dependent on the user context: say, 100 if
the user is “Totoro”. The question arises of how to compose the
possible values of the counter and their associated contexts.

Since we are dealing with side effects, the reasonable semantics
is that the most recent assignment has priority. This means that, re-
gardless of which thread looks at the counter, if the current user
is “Totoro”, then the value is 100. If not, then this means that the
counter should be what it was prior to the last contextual assign-
ment, that is, a thread local value. Fig. 3 illustrates the resulting
contextual value.

user

Totoro

_

counter

thread

t1

_

100

1

0

Figure 3. Sequence of scoped regions: the most recent assignment
goes ahead.

user

Totoro

_

counter
thread

t1

_

100

0 0

Figure 4. Nested scoped regions: the structure of the value reflects
the nesting relation of regions.

Note that this is indeed a simple generalization of the semantics
of scoped assignments. An assignment in a scoped region updates
a value with a contextual value whose default is the previous value
(whether it be contextual or not).

4.2.3 Nested scoped regions
As we have seen, when an assignment occurs in a scoped region,
its effect is to refine the existing value for the considered context:
creating a contextual value with the context function, apply the
function and set the new value for the context value.

This refinement operation must be extended to support multiple
nested contexts. Consider the following example, a variation of the
previous one, where the scoped regions are now nested:

(let ((counter 0))
...
(scoped current-thread

(scoped current-user
(set! counter 100)))

...
counter)

Similarly to sequencing, nesting also defines a notion of prece-
dence, but in a different manner: the region is first and foremost
a region where assignments are made thread local. Within that
scope, there is a further refinement that applies to the assignment of
counter, that makes the new value 100 only visible depending on
the current user context. This means that the above program returns
100 if and only if the current thread is the thread that executed the
assignment and the current user is the one that was active at that
time. In any other case, the value is 0. Fig. 4 illustrates how the
nesting of contextual values reflects the nesting of scoped regions.

4.2.4 Mutating contextual values
Up to now, we have omitted the fact that when a mutation occurs
within a scoped region, and the mutated value is already a con-
textual value, it may be that the context function of the outermost
region is the same as the context function of the contextual value3.
In this case, the contextual value should be updated (recall that this
can imply either overwriting an existing mapping, or adding a new
one), otherwise we would end up chaining contextual values with

3 Two functions are deemed equal either if they are the same actual value
(this is the simple equality our interpreters use), or if they have the same
source location and close over the same lexical environment (as imple-
mented by the eq? primitive of AspectScheme [9]).

user

Totoro

Bilbo

thread

t1

_

100

0
50

_ 0

user

Totoro

_

thread

t1

t2
100

50 0

_ 0

(a) current-thread = t1 (b) current-thread = t2

Figure 5. Updating an already-contextual value in a scoped region.

the same context function; this in turn would mean having to apply
the same context function several times for the same value.

Furthermore, both sequencing and nesting of scoped regions can
lead to contextual values being compound: a contextual value is
compound if one of its value mapping contains another contextual
value. Fig. 3 and 4 illustrate two different kinds of compound
contextual values. This means that the assignment mechanism must
recursively consider inner contextual values. For instance, consider
the following extension to the previous example:

(let ((counter 0))
...
(scoped current-thread

(scoped current-user
(set! counter 100)))

;; extension:
(set! user "Bilbo")
(scoped current-thread

(set! counter 50))
...
counter)

The contextual value associated to counter, depicted on Fig. 4,
is already thread-contextual, and the assignment occurs in a scoped
region on the current-thread context function. We should not
treat that new assignment like we did for a sequence of scoped re-
gions, because this would result in putting a new thread-contextual
value in front of the already thread-contextual value. Instead, we
should update the definition of the thread-contextual value accord-
ingly. If the current thread is also t1, then the corresponding value
is the user-contextual value, so we should update it recursively.
Since the current user has changed, we add a new mapping for the
“Bilbo” user (Fig. 5(a)). On the contrary, if the assignment is run
in a different thread t2, then we must create a new mapping in the
thread-contextual value for t2 (Fig. 5(b)).

4.3 Interpretation
Now we have clarified different semantic issues of scoped assign-
ment regions with contextual values, we turn to the actual interpre-
tation of the proposed constructs.

4.3.1 New expressions
The core Scheme interpreter shown on Listing 6 is extended with
two cases for the two new expressions we introduce, namely
scoped and with-scope:

<expr> ::= ...
| (scoped <expr> {<expr>}*)
| (with-scope {<expr>}*)

To support scoped assignment regions, the interpreter maintains
a list of currently-active scoped regions, in the form of a list of
context functions. Evaluating a scoped expression means extend-
ing the list of currently-active scoped regions (except if the context
function is the same as that of the last-entered region). To support
protected store regions, the interpreter also maintains a reference
to the environment that is active when a with-scope expression is

Listing 8 Interpretation of the new expressions.
... in the body of eval (Listing 6)...

((scoped-exp? exp)
(let ((ctx (eval (scoped-exp-ctx exp) env)))
(if (reentering-scope? ctx)

(eval-body (scoped-exp-body exp) env)
(fluid-let ((*scope* (cons ctx *scope*)))

(eval-body (scoped-exp-body exp) env)))))

((with-scope-exp? exp)
(fluid-let ((*protected* env))
(eval-body (with-scope-exp-body exp) env)))

entered: all values in the store that are accessible from this environ-
ment are considered protected during the extent of the block.

Both the list of active scoped regions and protected environ-
ment frames are associated to dynamic extents. Therefore, a typ-
ical design would be to pass them around in the eval procedure.
To avoid too much cluttering however, we opt for the use of two
global structures, *scope* and *protected*, which are redefined
for dynamic extents using the fluid-let rebinding mechanism of
PLT Scheme, which does precisely the dynamic binding we need.
The interpretation of these expressions is shown on Listing 8.

4.3.2 Scoped assignment semantics
The semantics of reading a value is unchanged by the introduction
of scoped assignment regions; it is as discussed in Section 3. The
actual value of a contextual value at a given point in time is obtained
by successively applying contextual functions and looking up in the
mapping until a non-contextual value is reached.

The part of the semantics that is most affected by the introduc-
tion of scoped assignment is, unsurprisingly, the assignment func-
tion setval!. First of all, setval! now takes an extra argument,
the list of context functions that represent the active scoped regions.
In the rest of this text, for conciseness, we refer to this list as the
list of scopes. The list is passed in reversed order of its construction,
so that the context function of the outermost region is the first el-
ement in the list. Setting a value begins by discriminating whether
the assignment to the given reference should be scoped:

(define (setval! ref nval cs)
(if (not-scoped? ref cs)

(setval-ns! ref nval)
(setval-s! ref nval cs)))

The assignment should be scoped only if the list of scopes cs
is not empty and if the reference ref is not pointing at a protected
value. If the assignment is not scoped, the standard semantics is
used (setval-ns! is identical to setval! presented in Section 3).

Setting a value in a scoped region is defined by setval-s!
(Listing 9 top). First, if the referenced value is not a contextual
value, then we do a refinement of the value for the list of scopes.
The refinement function refine is a recursive procedure over the
list of scopes (Listing 9 bottom). If the list is empty, the new value
is itself its refinement. Otherwise, refine creates a new contextual
value whose default is the current value, and whose value for the
current context is the refinement of the value in the rest of scopes.
This recursively chains contextual values in the order illustrated in
Fig. 4.

If the referenced value given to setval-s! is a contextual
value, then we need to check if the context function of the first con-
textual value is the same as the first function in the list of scopes. If
this is the case, we call setval! recursively with the rest of the list
of scope, passing it a reference to the value to update in the current

Listing 9 Interpretation of scoped assignment.
;; sets ref to nval in nested scope regions cs
(define (setval-s! ref nval cs)
(let ((val (deref ref)))

(if (and (cv? val) (eq? (cv-ctx val) (car cs)))
(setval! (cv-to-update! val) nval (cdr cs))
(setref! ref (refine val nval cs)))))

;; returns cv that refines v0 with nval in scopes cs
(define (refine v0 nval cs)
(if (null? cs) nval

(let ((cv (make-cv (car cs) ’() (vector #f v0))))
(cv-update! cv (refine v0 nval (cdr cs)))
cv)))

contextual value. The cv-to-update! function applies the context
function to get the current context value, and if there is a mapping
for this context, it returns a reference to the associated value. If
not, it adds a new mapping to the contextual value, associating the
context to the default value, and returns a reference to that value.

This corresponds to the two cases illustrated in Fig. 5: in the
first case (a), there is already a mapping in the contextual value for
thread t1, so the associated value is recursively updated, ending up
in a new mapping in the nested contextual value; in the second case
(b), the current thread is different, so a new mapping is added to the
first contextual value.

4.4 Discussion
This section has presented a much deeper and interesting level of
integration of contextual values in the programming language. Con-
ceptually, what we obtain is a context-dependent store of values,
which to our knowledge is something unavailable in any language
that supports mutation. The particularity of the design based on
contextual values in that the contextual store is built on a by-need
basis: only the values that are mutated within a scoped assignment
region are made contextual.

The question can be raised of how many values have to be
made contextual and what the performance impact of such an
approach might be. This first of all depends on how much side
effects are relied upon in the considered programming language
or style. For instance, in impure functional languages like Scheme,
which have side effects, good programming practice is to maximize
purely functional procedures. Also, to be fair, any comparison
would have to be between otherwise-equivalent implementations in
terms of functionality: if context dependence is needed, it has to be
implemented in one way or another. Another question to consider
is the kind of optimizations that can be made. For instance, it would
be possible to avoid making contextual all the values that have been
first defined in the scoped region itself, and to use information about
contexts that can never occur again to garbage collect some values.
The implementation we have presented is on purpose fairly naive to
be as close as possible to a clean operational semantics description.

5. Related Work
Several approaches to obtain dynamic bindings have been pro-
posed. The foremost example is that of dynamically-scoped “spe-
cial” variables of Common Lisp [21]: a global variable introduced
by defvar can be rebound for a certain dynamic extent in a let
form. The fluid-let macro of PLT Scheme [10] simulates this
local dynamic rebinding by side effecting the binding; as a conse-
quence issues can occur in multi-threaded programs. Conversely,
virtually all multi-threaded implementations of Common Lisp per-
form dynamic local rebinding of special variables in a thread-local
way. The dletf framework of Costanza [6] introduces thread-local

dynamic rebinding for any variable, by hooking into the special
variable mechanism of Common Lisp.

While the above approaches work on bindings, other ap-
proaches to dynamic binding rely on particular values that are
containers simulating the dynamic binding, at the cost of explicit
accessor operations to be used by clients. An example is the fluid
bindings (fluid and let-fluid) of Scheme 48 [15]. This is sim-
ilar to the design of explicit contextual values we have presented.
Thread-local versions of explicit fluid bindings have been pro-
posed in several languages under different names: thread fluids in
scsh [12], parameters in PLT Scheme [10], contextual variables in
PyContext [25]. All these are containers whose encapsulated values
are both thread-local and re-definable for a dynamic extent.

All these approaches to dynamic binding target at most two no-
tions of what “context” is: either a given dynamic extent, or the
executing thread. Contextual values are more general: a context
function is a first-class function that can use any computationally-
accessible information.

There are several proposals that are more explicitly targeted
to context-dependent adaptation. Some deal with adaptation of
program structure, such as ContextL with layered classes [7],
i.e. classes whose structure can be adapted for certain dynamic
extents. Others deal with adaptation of key elements of the behav-
ioral properties of a program, such a method dispatch in object-
oriented systems. A general approach in this category is predicate
dispatch [24, 19], and more specifically context-oriented proposals
like contextual dispatch [26], or more recently, the subjective multi-
methods of the Ambiance language [13]. Aspect-oriented program-
ming using pointcuts and advices [27] deals with execution events,
and can also be used to address context-dependent adaptation [23].

Finally, several approaches exist that provide interesting scop-
ing strategies for the refinements and adaptations they permit to
express. For instance, Classboxes [2] is a module system that pro-
vides open classes [5, 28] whose refinements are scoped to certain
client modules; ContextL [7] provides mixin layers that can be ac-
tivated only for a certain dynamic scope. While these approaches
deal with program code, there also exists several proposals for con-
trolling the application of behavioral changes in aspects [9, 22].

However, in all the approaches we have mentioned, side effects
caused by the execution of the refinements are visible outside their
scope of activation. Scoped assignment regions as we proposed
with contextual values make it possible to effectively restrict the
visibility of these side effects to certain contexts. For instance, if
a dynamic layer in ContextL is deployed within a scoped expres-
sion, its side effects will only be visible in a given context (which
can be based on the layer identity, or any other criteria). Therefore,
we believe our proposal complements the above proposals.

6. Conclusion and Perspectives
We propose a new language construct for context-oriented pro-
gramming: contextual values, that is, values that change depend-
ing on the context in which they are looked at and modified. Start-
ing from a trivial generalization of thread-local values –a particu-
lar kind of contextual value that is well known and widely used–,
we have explored more integrated language support for contextual
values. We have discussed the issues associated with providing im-
plicit contextual values in a call-by-value language. The culmina-
tion of this exploration is the proposal of a construct for scoped
assignment regions, whereby side effects performed in a certain
dynamic extent can be made local to certain contexts. We have il-
lustrated our proposal and its semantics through Scheme examples
and interpreters. By focusing on the issue of shared state, contex-
tual values complement existing approaches for context-dependent
behavior adaptation.

As future work, we want to specify contextual values more for-
mally using an extension of the recently-proposed operational se-
mantics of Scheme [17], and explore their formulation in an object-
oriented context. This work exposes the design of contextual val-
ues, but does not go far enough in their applications. In this line,
it is also interesting to look at how implicit contextual values can
be integrated in mature languages like Scheme and Common Lisp.
In particular, studying the complementarity of contextual values
with other context-oriented constructs in ContextL seems attrac-
tive. Also, there are various interesting applications of contextual
values that deserve more attention, such as security (e.g. sandbox-
ing the store), and, in languages where code itself is a value, pro-
gram definitions can be made context-dependent.

Acknowledgments. We would like to thank Pascal Costanza for in-
teresting discussions and references, Thomas Cleenewerck, Johan
Fabry, Robby Findler, Guillaume Pothier, and the anonymous DLS
reviewers for their comments on this work.

Availability. The code of the interpreters presented in this paper,
along with examples, is available at:
http://pleiad.dcc.uchile.cl/research/scope

References
[1] M. Baldauf and S. Dustdar. A survey on context-aware systems.

Technical Report TUV-1841-2004-24, Technical University of
Vienna, 2004.

[2] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Class-
box/J: Controlling the scope of change in Java. In Proceedings of the
20th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2005), pages 177–
189, San Diego, California, USA, October 2005. ACM Press. ACM
SIGPLAN Notices, 40(11).

[3] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Reflective
middleware solutions for context-aware applications. In Akinori
Yonezawa and Satoshi Matsuoka, editors, Proceedings of the 3rd
International Conference on Metalevel Architectures and Advanced
Separation of Concerns (Reflection 2001), volume 2192 of Lecture
Notes in Computer Science, pages 126–133, Kyoto, Japan, September
2001. Springer-Verlag.

[4] Keith Cheverst, Christos Efstratiou, Nigel Davies, and Adrian
Friday. Architectural ideas for the support of adaptive context-aware
applications. In Workshop on Infrastructure for Smart Devices - How
to Make Ubiquity an Actuality, Bristol, UK, September 2000.

[5] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch
in java. In Proceedings of the 15th International Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2000), pages 130–145, Minneapolis, Minnesota, USA,
October 2000. ACM Press. ACM SIGPLAN Notices, 35(11).

[6] Pascal Costanza. How to make Lisp more special. In Proceedings of
International Lisp Conference, Stanford, CA, USA, June 2005.

[7] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming – an overview of ContextL. In ACM
Dynamic Language Symposium (DLS 2005), San Diego, CA, USA,
October 2005.

[8] A. K. Dey and G. D. Abowd. Towards a better understanding of
context and context-awareness. In Workshop on the What, Who,
Where, When, and How of Context-Awareness, as part of the 2000
Conference on Human Factors in Computing Systems (CHI 2000),
The Hague, The Netherlands, April 2000.

[9] Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi.
Semantics and scoping of aspects in higher-order languages. Science
of Computer Programming, 63(3):207–239, December 2006.

[10] Matthew Flatt. PLT MzScheme: Language manual, 2007. Version
372.

[11] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes.
Essentials of Programming Languages (2nd ed.). The MIT Press,
2001.

[12] Martin Gasbichler and Michael Sperber. Processes vs. user-level
threads in scsh. In 3rd Workshop on Scheme and Functional
Programming, October 2002.

[13] Sebastián González, Kim Mens, and Patrick Heymans. Highly
dynamic behaviour adaptability through prototypes with subjective
multimethods. In Proceedings of the ACM Dynamic Languages
Symposium (DLS 2007), pages 77–88, Montreal, Canada, October
2007. ACM Press.

[14] J. Kephart. A vision of autonomic computing. In Onward! Track at
OOPSLA 2002, pages 13–36, Seattle, WA, USA, 2002.

[15] Richard A. Kesley and Jonathan A. Rees. A tractable Scheme
implementation. Lisp and Symbolic Computation, 7(4):315–335,
1995.

[16] Shriram Krishnamurthi. Programming Languages: Application and
Interpretation. 2007. Version 2007-04-26.

[17] Jacob Matthews and Robert Bruce Findler. An operational semantics
for Scheme. Journal of Functional Programming, 18(1):47–86,
January 2008.

[18] P. K. McKinley, S. M. Sadjadi, and B. H Kasten, Cheng. Composing
adaptive software. IEEE Computer, 37(7):56–64, July 2004.

[19] Todd Millstein. Practical predicate dispatch. In Proceedings of the
19th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2004), pages 345–
364, Vancouver, British Columbia, Canada, October 2004. ACM
Press. ACM SIGPLAN Notices, 39(11).

[20] Kurt Schelfthout, Tom Holvoet, and Yolande Berbers. Views:
Middleware abstractions for context-aware applications in manets.
In 5th International Workshop on Software Engineering for Large-
scale Multi-Agent Systems, 2005.

[21] Guy Steele. Common Lisp the Language, 2nd Edition. Digital Press,
1990.

[22] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2008), pages 168–179,
Brussels, Belgium, April 2008. ACM Press.

[23] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware aspects. In Welf Löwe and Mario Südholt, editors,
Proceedings of the 5th International Symposium on Software
Composition (SC 2006), volume 4089 of Lecture Notes in Computer
Science, pages 227–242, Vienna, Austria, March 2006. Springer-
Verlag.

[24] Aaron Mark Ucko. Predicate dispatching in the Common Lisp Object
System. Technical Report AITR-2001-006, Massachusetts Institute
of Technology, Artificial Intelligence Laboratory, Cambridge, MA,
2001.

[25] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-
oriented programming: Beyond layers. In Proceedings of the
International Conference on Dynamic Languages (ICDL 2007), pages
143–156, 2007.

[26] Robert J. Walker and Gail C. Murphy. Implicit context: Easing
software evolution and reuse. In Proceedings of the 8th International
ACM SIGSOFT Symposium on Foundations of Software Engineering
(FSE-8), pages 69–78, San Diego, CA, USA, 2000. ACM Press.

[27] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A
semantics for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming Languages and
Systems, 26(5):890–910, September 2004.

[28] Daniel Weinreb and David Moon. Flavors: Message passing in
the Lisp machine. A.I. Memo 602, Massachussetts Institute of
Technology, Artificial Intelligence Laboratory, 1980.

[29] Mark Weiser. Some computer science issues in ubiquitous computing.
Communications of the ACM, 36(7):75–84, July 1993.

