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Abstract—Static type systems play an essential role in con-
temporary programming languages. Despite their importance,
whether static type systems influence human software devel-
opment capabilities remains an open question. One frequently
mentioned argument for static type systems is that they improve
the maintainability of software systems—an often used claim for
which there is no empirical evidence. This paper describes an
experiment which tests whether static type systems improve the
maintainability of software systems. The results show rigorous
empirical evidence that static type are indeed beneficial to these
activities, except for fixing semantic errors.

I. INTRODUCTION

There is a long, ongoing debate about the possible pros
and cons of static or dynamic type system in programming
languages (see [2], [14], [4] for a general introduction into type
systems). While many authors state that static type systems
are extremely important (see again [2], [14], [4]), others hold
opposite views (for instance, [22]).

Typical examples of arguments about advantages of static
type systems can be found in many text books on programming
and programming languages:

• “Strong typing is important because adherence to the
discipline can help in the design of clear and well-
structured programs. What is more, a wide range of
logical errors can be trapped by any computer which
enforces it”. [1, p. 8]

• “A static type system provides the reader of code with an
implicit documentation. Because a static type system en-
forces type declarations for variables, methods parameters
and return types, it implicitly increases the documentation
factor by making the code speak for itself.” [14, p. 5]

Some of the drawbacks typically mentioned include [22, pp.
149–159]:

• “A type system can be overly restrictive and forces the
programmer to sometimes work around the type system.”

• “They can get in the way of simple changes or additions
to the program which would be easily implemented in a
dynamic type system but make it difficult in the static
type system because of dependencies that always have to
be type correct.”

The debate regarding the pros and cons of static or dynamic
type systems is ongoing in both academia and the software
industry. While statically typed programming languages such
as C, C++ and Java dominated the software market for
many years, dynamically typed programming languages such
as Ruby or JavaScript are increasingly gaining ground—
especially in the domain of software development for the web.
This paper contributes to this discussion with a controlled
experiment (see [11], [23], [19], [16] for introductions on con-
trolled experiments) that empirically investigates the possible
benefits of static type systems.

The main research question for our experiment is whether
a static type system is helpful to humans, given the following
considerations: 1) a set of use cases involving new classes,
and 2) in tasks involving fixing errors in an application. The
programming languages used in the experiment were Java and
Groovy—where Groovy was used as a dynamically typed Java.
The classes given to the subjects were either statically typed
(for Java) or dynamically typed (for Groovy). The experiment
reveals that those subjects who used the statically typed
version of the classes had a significant positive benefit for tasks
where different classes had to be used and where type errors
had to be fixed (respectively no-such-method-errors in the
dynamically typed classes). For semantic errors, no difference
between the statically and dynamically typed variants were
found. The measurements are based on development time; the
time developers needed to solve a given programming task.

Structure of the paper. Section II gives an overview
of related work. Section III describes the experiment by
discussing initial considerations, the programming tasks given
to the subjects, the general experimental design, and threats to
validity. Then, section IV describes the results by describing
the measured data, giving descriptive statistics and performing
significance tests on the measurements. After discussing the
experiment in section V, we conclude in section VI.

II. RELATED WORK

Gannon’s early experiment [7] revealed an increase in
programming reliability for the subjects using a language with
a static type system; each subject solved a task twice, with both
kinds of type systems in varying order.
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Prechelt and Tichy studied the impact of static type checking
on procedure arguments using the programming languages
ANSI C, which performs type checking on arguments of
procedure calls, and K&R C, which does not [17]. The
experiment revealed, for one task, a significant positive impact
of the static type system with respect to the development time,
but did not reveal a significant difference for the other.

A qualitative pilot study on type systems by Daly et al.
observed programmers who used a new type system for an
existing language [5]. The authors concluded that at least in
the specific setting, the benefit of the statically typed language
could not be shown.

An empirical evaluation of seven programming languages
performed by Prechelt [15] showed that programs written in
(dynamically typed) scripting languages (Perl, Python, Rexx,
or Tcl), took half or less time to write than equivalent programs
written in C, C++, or Java.

The study presented here is part of a larger experiment series
about static and dynamic type systems (see [9]).

In [8] we studied the effect of a static and dynamic type
system to implement a scanner and a parser; The dynamic
type system had a significant positive time benefit for the
scanner, while no significant difference could be measured
for implementing the parser. In [21] we analyzed to what
extent type casts, which occur in statically typed programs,
influence simple programming tasks. We found out that type
casts did negatively influence the development time of trivial
programming tasks, while longer tasks showed no significant
difference.

A further experiment [20] revealed that the fixing of type
errors is significantly faster with a static type system (in
comparison to no-such-method errors). In [13] we analyzed
the impact of static or dynamic type systems on the use
of undocumented APIs. The study showed for three of five
programming tasks a positive impact of the static type system,
and a positive impact of the dynamic type system for two other
tasks.

III. EXPERIMENT DESCRIPTION

We start with initial considerations, then discuss our pro-
gramming environment and methodology. After introducing
the experimental design we give a detailed description of
the programming tasks. Then, we describe the experiment
execution and finally, we discuss threats to validity.

A. Initial Considerations for Experimental Design

The intent of the experiment is to identify in what situations
static type systems possibly have an impact on the devel-
opment time. The underlying motivation for this experiment
is that previous experiments already identified a difference
between static and dynamic type system for programming
tasks [7], [17], [8], [21]. According to previous experiments
and the literature on type systems, our expectations were that
static type systems potentially help in situations like 1) adding
or adapting code on an existing system, and 2) finding and

correcting errors in an existing system. Therefore we examine
three kinds of programming tasks:

1) using the code from an existing system, where docu-
mentation is only provided by the source code;

2) fixing type errors (no-such-method-errors for dynami-
cally typed applications) in existing code;

3) fixing semantic errors in existing code.
The hypotheses followed by the experiment were:

1) Static type systems decrease development time if classes
should be used which are only documented by its source
code

2) Static type systems decrease development time if type
errors need to be fixed

3) For fixing semantic errors, the (static or dynamic) type
system has no influence on the resulting debugging time.

The programming tasks reflect the three hypotheses; we did
not want to have a single task for each hypothesis, as the
experiment’s result could be heavily influenced by a compound
factor such as task description, etc. Thus we defined several
tasks for each hypothesis. Since we needed statically and
dynamically typed programming tasks, an obvious consider-
ation is the choice programming languages. Our goal was to
use languages as similar as possible, and which do not need
exhaustive additional training for the subjects. Since Groovy
can be used as a dynamically typed Java, and the subjects
were already proficient with Java, this language pair was an
obvious choice.

B. Environment and Measurement

We use the Emperior programming environment which was
used in previous experiments [6]. It consists of a simple text
editor (with syntax highlighting) with a tree view that shows
all necessary source files for the experiment. From within the
text editor, subjects were permitted to edit and save changes
in the code and also to run both the application and test cases.

Subjects worked sequentially on each individual task, with-
out knowing the next ones. Every time a new programming
task was given to the subject, a new IDE was opened which
contained all the necessary files. For each task, subjects were
provided executable test cases, without their source code. We
measured the development time until all test cases for the
current programming task passed; we do not need to measure
correctness, as passing tests imply correctness.

The whole programming environment (IDE with program-
ming tasks, test cases, etc.) including the operating system
(Ubuntu 11.04) was stored on an USB stick which was used
to boot the machines used in the experiment.

C. Experimental Design

The experiment in this paper follows a within-subject design
that has been applied in previous experiments [21], [6], [13].
The motivation for the within-subject design is the relatively
low number of subjects: While within-subject designs poten-
tially suffer from the problem of learning effects, they have
the benefit that each individual’s difference in performance can
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be considered in the analysis, which increases the statistical
power.

In this design, we first give developers a set of statically
typed programming tasks, i.e. programming tasks with a
corresponding set of classes which have static type annotations
in the Java programming language and the same tasks with a
set of classes without such annotations in Groovy. In order to
study whether there is a difference between both solutions,
we divide the set of subjects into two groups and let one
group start the development tasks with Groovy and the other
group start with Java (often called counterbalancing). Table I
illustrates the corresponding design.

Table I
GENERAL EXPERIMENTAL DESIGN

Technique for all tasks
(round 1)

Technique for all tasks
(round 2)

Group A Groovy Java
Group B Java Groovy

The potential problem with this approach is in cases where
the learning effect is too large. In such cases, the second
measurement will always be lower than the first measurement:
the experiment will not reveal any result. In case the learning
effect and the language effect is equal, the design still reveals
a result since group B would not show any difference, while
group A would (under the assumption that the static type
system indeed decreases development time). A more detailed
discussion of this design can be found in [21], [13].

D. Base Application

The software used by the participants was based on a
small, round-based, video game written in Java for a previous
experiment [10], which was slightly extended. This application
base consisted of 30 classes, with 152 methods, and contained
approximately 1300 lines of code. We translated the applica-
tion to Groovy, removing all static type system information.

While it is difficult to do so completely, to reduce learning
effects we renamed all the classes, fields, methods, and other
code constructs in the Java application, to produce an applica-
tion in a different program domain—a simple e-mail client. For
both programs, we renamed field and method parameter names
so that they would not reflect the exact type they contained.
This was done to remove the documentation value of type
names from variables, and to make the program type free.
Variables were renamed using synonyms of the types they
stood for.

E. Programming Tasks

The experiment consisted of 9 tasks, each of which had to
be solved in both languages. In addition to these regular tasks,
a warm-up task (not part of the analysis) was provided to make
the participants comfortable with the environment they had to
use. The task descriptions were provided as a class comment.
Example solutions for each task can be found in the appendix

(Tables V, VI). According to the hypotheses in the experiment
we designed three kinds of tasks:

• Class identification tasks (CIT), where a number of
classes needs to be identified (Table V). The participants
had to fill a method stub in the task.

• Type error fixing tasks (TEFT), where a type error
needs to be fixed in existing code (Table VI).

• Semantic error fixing tasks (SEFT), where a semantic
error needs to be fixed in existing code (see Table VI).

In the following we describe the characteristics of each task.
The numbering of the tasks corresponds to the order in which
the tasks were given to the subjects. We explain the task
description for only one of the languages to conserve space.

1) CIT 1 (two classes to identify): For this task two classes
have to be identified, namely a Pipeline class which would
take a generic type parameter and the ActionsAndLoggerPipe
class. Instances of these have to be used by initializing a type
ActionsAndLoggerPipe with two Pipeline instances and then
passing the pipe along a method call.

2) CIT 2 (Four Classes to Identify): This task requires 4
classes to be identified. In Java, instances of MailStartTag
and MailEndTag have to be sent to an instance of the type
EMailDocument, along with an Encoding (which is an abstract
class, but any of the provided subclasses was a correct choice
for instantiation). Additionally, both start and end tag have to
be provided with a CursorBlockPosition instance during their
creation.

3) CIT 3 (Six Classes to Identify): For this task six classes
need to be identified. A MailElement subclass of type Op-
tionalHeaderTag has to be instantiated, outfitted with several
dependencies and then returned.

4) SEFT 1: In this task a semantic error, which leads to
wrong program behavior, needs to be fixed. Subjects are given
a sequence of statements that are executed during test runs and
give a starting point for debugging. An additional consistency
check shows what was expected from the program. In the code,
when a cursor reaches the last element of an e-mail, it should
result in a job of type ChangeMailJob in order to load the next
mail. Because of the error, a SetCursorJob instance is wrongly
used instead, which reset the cursor back to the first element of
the current mail. The consistency check provides a description
of the error and tells the participants that the current document
has not changed after reaching the last element.

5) SEFT 2: Subjects are given a code sample that interacts
with the application and which contains a consistency check.
In this task, the goal is to identify a missing method call in
the code that leads to wrong behavior. TableVI shows both
the wrong code and the correct solution for the Groovy video
game. The problem is that once a player moves from one
field to the next, a move command is executed. This move
command is supposed to set the player reference to the new
field and delete it from the previous. The semantic error is that
the call to the method is missing. This leads to duplicate player
references, which are detected by the consistency check. The
participants had to insert the missing call.
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6) CIT 4 (Eight Classes to Identify): This task requires
instantiating the WindowsMousePointer class. This object has
to be outfitted with dependencies to other objects (e.g., icons,
cursors, theme). The task requires the subjects to identify the
class hierarchies and subclasses that are needed. Enumeration
types were used as well, although the specific values were not
critical to the task.

7) TEFT 1: This task contains a type error where the place
with the faulty code is different from the place that leads to
a program run-time exception. Because of the nature of this
error, they are easily detected by the static type checker in
Java. As such, only the Groovy tasks require explanation (see
Table VI). In the erroneous code in Groovy, a GameObject
instance is inserted into a property that is supposed to be a
simple String. As such, when the consistency check runs, the
properties are concatenated, which leads to a run-time excep-
tion, because the GameObject does not have a concatenate
method. The solution is to remove the GameObject and keep
the String.

8) CIT 5 (Twelve Classes to Identify): These tasks requires
subjects to identify twelve classes; the largest construction
effort of all type identification tasks. In Java, participants
have to configure a MailAccount instance with dependencies
to other objects, which represent a part of the mail account
configuration (e.g., user credentials). These objects also have
dependencies to other objects, resulting in a large object graph.

9) TEFT 2: We suspect this task is one of the more difficult
ones for Groovy developers. It contains a wrongly assigned
object leading to a run-time error, but the distance between the
bug insertion and the run-time error occurrence is larger than
for tasks TEFT 1. When a new TeleportCommand is created,
it is outfitted with dependencies to the player and the level.
The bug is that the order of the two parameters is wrong. The
solution is to switch the order of the two types, which may
not be obvious.

10) Summary of Programming Tasks: Table II gives an
overview of the characteristics of each programming task. Five
programming tasks required participants to identify classes—
where they varied with respect to the number of classes to
be identified. For the type errors, as well as for the semantic
errors, we designed two programming tasks.

For CI Tasks, developers are given an empty method stub
where parameters either need to be initialized or used for
the construction of a new object (which requires additional
objects as input). For TEF Tasks, Java developers have code
that does not compile due to a type error. In contrast, for
Groovy developers, a test case fails. In both cases, the subjects
have to transform the code base. For SEF Tasks, all subjects
are given failing tests and the code base must be modified
until all pass.

F. Experiment Execution

The experiment was performed with 36 subjects, but only
33 finished the tasks. Of these subjects, thirty students, three
were research associates, and three were industry practitioners.
All subjects were volunteers and were randomly assigned

to the two groups. Two practitioners started with Java and
all three research associates started with Groovy. A more
detailed description of the subjects can be found in [12]. The
experiment was performed at the University of Duisburg-Essen
within a time period of one month. The machines used by the
subjects where IBM Thinkpads R60, with 1GB of RAM.

G. Threats to Validity

As with any scientific study, this study has a number of
potential threats to validity. Some of the threats are general for
these kinds of experiments (students as subjects, small pro-
gramming tasks, artificial development environment), which
are already discussed in detail in other related experiments (see
for instance [21], [8]). Furthermore, the experimental design
causes some internal threats (learning effect may hide the main
effect) which is explained in more detail in [13]. As many of
these threats have been described previously, we discuss here
those most relevant to the current experiment.

Table II
SUMMARY OF PROGRAMMING TASKS FOR SUBJECTS IN GROUP A

(GROOVY STARTERS), G = GROOVY, J = JAVA

Task Number 1 2 3 4 5 6 7 8 9

Task Name C
IT

1

C
IT

2

C
IT

3

SE
FT

1

SE
FT

2

C
IT

4

T
E

FT
1

C
IT

5

T
E

FT
2

#Identified Classes 2 4 6 8 12
Language G G G G G G G G G

Task Number 10 11 12 13 14 15 16 17 18

Task Name C
IT

1

C
IT

2

C
IT

3

SE
FT

1

SE
FT

2

C
IT

4

T
E

FT
1

C
IT

5

T
E

FT
2

#Identified Classes 2 4 6 8 12
Language J J J J J J J J J

Chosen tasks (external validity): We explicitly designed
the programming tasks in a way that complicated control struc-
tures such as loops, recursion, etc. were not used. Using those
control structures probably increases the variability amongst
subjects. Given this potential problem, the effects observed
here may not generalize to real-world programs in industry.

Chosen programming languages (internal and external
validity): For practical reasons we decided to use Java and
Groovy as representatives for languages with static and dy-
namic type systems. However, Java’s type system requires ex-
plicit type annotations for return types, variables, parameters,
etc. This differs from the type system of languages such as
ML. As a consequence, Java source code requires more text;
the potential disadvantage is that writing this code requires
more keyboard input, while the potential benefit is that these
annotations present reinforcing documentation. However, the
characteristic of having a type annotation and its consequences
is not directly related to static type systems and can be
achieved without having a statically typed languages. If our
experiment reveals a difference between Java and Groovy, it
is possible the observed effect is not related to the type system,
but is instead related to the syntactical element type annotation.
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Table III
DESCRIPTIVE STATISTICS OF EXPERIMENT RESULTS (TIME IN SECONDS FOR ALL BUT STANDARD DEVIATION), J = JAVA, G = GROOVY

CIT 1 CIT 2 CIT 3 SEFT 1 SEFT 2 CIT 4 TEFT 1 CIT 5 TEFT 2 Sums
J G J G J G J G J G J G J G J G J G J G

min 124 227 193 295 320 591 104 153 74 87 323 537 78 149 293 564 44 246 1907 4072
max 1609 2215 4285 1354 1983 2433 2910 3062 2264 2262 3240 2505 900 2565 1514 2538 535 2285 14414 14557

arith. mean 535 818 781 669 813 1182 1111 814 507 429 827 1026 236 928 691 1112 147 849 5648 7827
median 480 575 567 562 711 1010 1015 639 293 282 716 880 197 813 671 1046 116 750 4892 7349
std. dev. 336 552 787 309 410 453 798 696 528 426 543 461 159 549 246 417 101 557 2925 2214

In other words, the effect of syntax, or our choice of languages
(e.g., Java and Groovy), is not clear from this study.

IV. EXPERIMENT RESULTS

A. Measurements and Descriptive Statistics

Table VII shows the observed development time for all
tasks, while Table III shows the corresponding descriptive
statistics. The boxplot in Figure 1 gives a more intuitive
representation of the data. Both the data and the descriptive
statistics reveals several facts. First, no single subject had
sums of development times for Java that were greater than the
sums of development times for Groovy. Second, for all tasks
(including the sums) the minimum time is always smaller in
Java than in Groovy. However, this statements does not hold
for the maximum times, the arithmetic means, or the medians:

• Maximum: For the tasks CIT 2, SEFT 2 and CIT 4
the maximum development time is larger for the Java
solution.

• Arithmetic mean: For the tasks CIT 2, SEFT 1, and
SEFT 2 the arithmetic mean is larger for the Java solu-
tions.

• Median: For the tasks CIT 2, SEFT 1, and SEFT 2 the
median for the Java solutions is larger.

Consequently, the first impression that the Java development
times are always faster than the Groovy development times
is not immediately obvious—due to the different results from
the maximum, arithmetic means and medians.

B. Repeated Measures ANOVA

We start the statistical analysis by treating each subsequent
round of tasks separately. This is completed by first analyzing
round 1 of programming tasks (task 1–9) with all developers
together (i.e. those that solved the tasks in Java and those that
solved the tasks in Groovy). Then, we do the same for the
second round. The analysis is performed by using a Repeated
Measure ANOVA, with the within-subject factor programming
task and the between-subject factor programming language.
Since this analysis combines the different languages in each
round, it cannot benefit from the within-subject effect that each
individual performs each task twice. Figures 2 and 3 show the
boxplots for the two rounds. While for the type error fixing
tasks (TEFT), there seems to be hardly a difference between
both rounds, we see rather large differences for the other kinds
of tasks in both rounds. Further, before conducting our tests,
we ran Mauchly’s sphericity test, which was significant in both

Task

TEFT 2TEFT 1SEFT 2SEFT 1CIT 5CIT 4CIT 3CIT 2CIT 1

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

4
0
0
0

3
0
0
0

2
0
0
0

1
0
0
0

0

Java

Groovy

Language

Figure 1. Boxplot for measured data (ordered by kind of task)

rounds. As such, we used the standard Greenhouse-Geisser
correction in reporting our Repeated Measure ANOVA results.

Results show, first, that the dependent variable of develop-
ment time showed a significant difference in the first as well as
in the second round (p<.001, partial η2=.275 in the first round
and p<0.001, partial η2=.246 in the second round). In both
cases the estimated effect size is comparable (with .275 and
.246). Second, there is a significant interaction between the
factor programming task and programming language (in the
first round p<.001, partial η2=.181 and in the second round
p<.001, partial η2=.172). In both cases the estimated effect
size is comparable. The significance indicates that the original
motivation holds—the effect of the programming language
is different for different programming tasks. Concerning the
impact of the between-subject factor programming language,
it turns out that it is non-significant for the first round (p>.76)
and significant for the second (p<.001).

To summarize, different programming tasks have an influ-
ence on the resulting development times. Furthermore, the
resulting development times depend on the tasks as well as on
the programming language. Hence, it is reasonable to analyze
the different tasks and the languages in separation, with a
within-subject study of each task.
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Figure 2. Boxplot for first round (no repeated measurement of same tasks,
ordered by kind of task)
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Figure 3. Boxplot for second round (no repeated measurement of same tasks)

C. Task-Wise and Group-Wise Analysis

To perform a within-subject analysis on each task we
combine, for each subject, the development times for both
rounds. In other words, we compare the group starting with
Java and the group starting with Groovy separately.

Figures 4 and 5 show boxplots for both groups. The groups
are quite different: for the group starting with Groovy there is
a clear positive impact of Java, while for the Java-first group
the effect is more nuanced. In all cases, we performed the
non-parametric Wilcoxon-test. The results of the test for the
first group starting with Groovy (“Groovy first”) and the group
starting with Java (“Java first”) as well as the combination of
both analyses is given in Table IV; to ease reading, the table

Task
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Figure 4. Boxplot for group starting with Groovy

Task

TEFT 2TEFT 1SEFT 2SEFT 1CIT 5CIT 4CIT 3CIT 2CIT 1

T
im

e
s
 (

in
 s

e
c
o

n
d

s
)

4000

3000

2000

1000

0

Java

Groovy

Language

Figure 5. Boxplot for group starting with Java

reports the language with less development time instead of the
raw rank sums.

We can see that for the group starting with Groovy, the
effect of the programming language is always significant: in all
cases Java required less development time. Likely explanations
are either the effect of the static type system or the learning
effect from the experiment. For the group starting with Java,
we have a different result. For CIT 2, SEFT 1, and SEFT 2 the
subjects required less time with Groovy, while no significant
impact of the programming language was found for CIT 1, CIT
3 and CIT 4. Combining both results, we obtain a positive
impact of Java for all Type Error Fixing Tasks (TEFT), all
Class Identification Tasks (except CIT 2), and no impact on
the semantic error fixing tasks.
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Table IV
WILCOXON-TEST FOR THE WITHIN-SUBJECT COMPARISON

Groovy first

Task C
IT

1

C
IT

2

C
IT

3

C
IT

4

C
IT

5

T
E

FT
1

T
E

FT
2

SE
FT

1

SE
FT

2

p-value .000 .001 .001 .000 .000 .000 .000 .028 .001
benefit Java Java Java Java Java Java Java Java Java

Java first
p-value .91 .034 .215 .679 .003 .001 .001 .001 .003
benefit – Groovy – – Java Java Java Groovy Groovy

Result
benefit Java – Java Java Java Java Java – –

V. DISCUSSION

The experiment revealed a positive impact of the static type
system for six of nine programming tasks: For all tasks where
type errors needed to be fixed (TEFT) and for most of the tasks
where new classes need to be used (CIT), but no difference for
semantic error fixing tasks (SEFT). From this perspective, the
experiment provides evidence that static type systems benefit
developers in situations where a set of classes has to be used
where documentation is limited or not available (which we
suspect is quite common). An important implication of the
experimental results is that no single tasks could be used to
argue in favor for dynamic type systems—the best humans
performed with them was a statistical tie compared to their
static cousins.

Further, while no statistically significant differences were
observed with regards to tasks involving debugging semantic
errors, it seems plausible that learning effects masked any
potential results. This is a common problem with repeated
measures designs such as ours. The trade-off here is that such
experimental designs make it easier to obtain statistically reli-
able results on small samples (because you obtain more data
from each subject), but such learning effects must be taken into
account, both statistically (using a Repeated Measures Anova)
and practically (e.g., potentially adjusting the tasks). With that
said, even if one type is ultimately found to be superior for
this kind of task, the fact that it may be masked implies that
the effect size is probably small.

In CIT 2, the group starting with Groovy was faster with
the statically typed solution, while the group starting with
Java was faster with the dynamically typed solution. Following
the same argumentation as before, this likely means that the
learning effect was larger than the (possible) positive main
effect of the static type system. However, it was not obvious
from our observations why this would be the case. Ultimately,
the principle for solving CIT 2 was the same as for CIT 1,
3, 4, and 5. In all these cases, the developer had to use a
number of new classes which were not known to him upfront.
In CIT 2, a relatively small number of new classes had to be
identified (four types)—which is less than for CIT 3, 4, and
5, but more than for CIT 1. Hence, it is not sufficient to argue
that this task is different because of the number of classes to
be identified.

We cannot exclude that the special situation of CIT 2 might

be the result of the underlying domain. Groovy developers
(who used the video game example) may have found the
classes to be used more intuitive than the classes for the Java
application (the mail client). Additionally, we think that the
method names in the task might have given the developers
a hint on the kinds of classes had to be used. For instance,
the methods setStart and setGoal in the Groovy code for task
two seem to have a larger association to the necessary types
StartLevelField and GoalLevelField in comparison to task one
(where setTasksAndMessages required a Queue object).

At least, the special situation with CIT 2 gives implies that
the argumentation for or against static types cannot be trivially
reduced to the question of how many (unknown) classes are
needed in order to solve a programming task. There seem to
be other factors which need to be identified. Given this point,
we think that identifying these factors exactly is an important
avenue of future work, if nothing else, to provide future
programming language designers with a roadmap for how type
systems could, or maybe should, be designed to maximize
human performance as best as the research community is able
(see [13] for a corresponding example and a more detailed
discussion).

VI. SUMMARY AND CONCLUSION

Although there is a long ongoing debate about the possible
pros and cons of static type systems, there is hardly any
empirical data available on their usage by human developers.
This paper introduced an experiment empirically analyzing the
potential benefit of static type systems. Three kinds of pro-
gramming tasks—all of them potential maintenance tasks—
were given to 33 subjects: tasks where a set of previously
unknown classes had to be used by the developers, tasks
where developers had to fix semantic errors, and tasks where
developers had to fix type errors. Altogether nine programming
tasks were given to the subjects.

Each subject did the programming tasks twice: with a
statically typed environment and with a dynamically typed
one. For the statically typed environment, the subjects used the
programming language Java, while for the dynamically typed
environment they used Groovy. The result of the experiment
can be summarized as follows:

• Static type systems help humans use a new set of
classes: For four of the five programming tasks that
required using new classes, the experiment revealed a
positive impact of the static type system with respect
to development time. For one task, we did not observe
any statistically significant difference (possibly due to
learning effects).

• Static type systems make it easier for humans to fix
type errors: For both programming tasks that required
fixing a type error, the use of the static type system
statistically significantly reduced development time.

• For fixing semantic errors, we observed no differences
with respect to human development times: For both
tasks where a semantic error had to be fixed, we did
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not observe any statistically significant differences (also
possibly due to learning effects).

The experiment suffers (like every experiment) from a number
of threats to validity. One of them is that the dynamically
typed code was artificially constructed in a way that the
names of the parameters, variables, etc. did not contain any
hints with respect to the corresponding expected types. It
might be the case that we caused additional complexity to
the dynamically typed solutions. In fact, to what extent (or
for which percentage or in what situation) parameter names
in dynamically typed code reflect the classes/types that are
expected is unclear. An empirical investigation of dynamically
typed source code repositories could help answering this
question (examples of these studies are [3], [18]).

It might be further noted that there is some oft occurring
statement that tool support for statically typed languages is
easier to achieve (for code refactorings, etc.). Under this
assumption, using a mature IDE (such as Eclipse etc.) it seems
reasonable that a positive impact on the development times for
the statically typed versions would be observed. We think that
in our case (for the languages Java and Groovy) this would
have been the case—however, Java has much more mature
IDE support than Groovy and it is important to make the
experimental conditions similar. As such, we used simple text
editors to make our study as fair as we were able. Still, tool
support is common in industry and it seems reasonable that
this factor could be considered in future studies.

An interesting observation of this study is that the results
partially contradict previous work, (see e.g., [21], [8] as well
as [13])—in those studies, a positive impact of the dynamic
type system was found for some programming tasks. We think
that this partial contradiction exists (for example, compared
to [21]) because our tasks here were more complex and
potentially better suited for the kind of programming where
we might expect to see benefits for static, but not dynamic,
typing [21], [13]. As such, while the results do differ slightly,
our contribution here is in showing evidence that, for some
tasks, humans do benefit from static type systems. This result
hardly implies that static systems benefit programmers for all
tasks (a conclusion that seems unlikely). However, we think
the onus is now on supporters of dynamic typing to make
their claims with rigorously collected empirical evidence with
human subjects, so the community can evaluate if, and under
what conditions, such systems hold benefits.
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Table V
EXAMPLE SOLUTIONS FOR CLASS IDENTIFICATION TASKS

Java solution Groovy solutions

C
IT

1

void i n i t i a l i z e S e r v e r (
M a i l E d i t o r S e r v e r s e r v e r ) {
P i p e l i n e < S t r i n g > s t r i n g P i p e =

new P i p e l i n e < S t r i n g > ( ) ;
P i p e l i n e <Job > j o b P i p e = new P i p e l i n e <Job > ( ) ;
Ac t ionsAndLoggerP ipe a c t i o n s L o g g e r P i p e =

new Act ionsAndLoggerP ipe ( s t r i n g P i p e , j o p P i p e ) ;
s e r v e r . s e t A c t i o n s A n d L o g g e r ( a c t i o n s L o g g e r P i p e ) ;

}

d e f c o n f i g u r e M a n a g e r (
d e f manager ) {
d e f messages =

new GameQueue ( ) ;
d e f commands = new GameQueue ( ) ;
d e f t a sksAndMessages =

new TaskAndMessageQueue ( messages , commands ) ;
manager . se tTasksAndMessages ( t a sksAndMessages ) ;

}

C
IT

2

void s e t M a i l S t a r t E n d ( EMailDocument emai l ,
i n t s t a r t X , i n t s t a r t Y , i n t endX , i n t endY ) {
e m a i l . s e t S t a r t E l e m e n t ( new M a i l S t a r t T a g (

new C u r s o r B l o c k P o s i t i o n ( s t a r t X , s t a r t Y ) ) ) ;
e m a i l . s e tE ndE lemen t ( new MailEndTag (

new C u r s o r B l o c k P o s i t i o n ( endX , endY ) ) ) ;
e m a i l . s e t F o r m a t ( new UTF8Encoding ( ) ) ;

}

void c o n f i g u r e L e v e l ( d e f l e v e l ,
d e f s t a r t X , d e f s t a r t Y , d e f goalX , d e f goalY ) {
l e v e l . s e t S t a r t ( new S t a r t L e v e l F i e l d (

new P o s i t i o n ( s t a r t X , s t a r t Y ) ) ) ;
l e v e l . s e t G o a l ( new G o a l L e v e l F i e l d (

new P o s i t i o n ( goalX , goalY ) ) ) ;
l e v e l . s e t L e v e l K i n d ( new DungeonLevelType ( ) ) ;

}

C
IT

3

Mai lElement i n t i a l i z e E l e m e n t ( i n t x _ p o s i t i o n ,
i n t y _ p o s i t i o n , char headerType )
throws I n v a l i d H e a d e r E x c e p t i o n {
Header h e a d e r = new Header ( headerType ) ;
Op t i on a l He a d e r T ag newTag =

new O p t i on a l He a d e r T ag ( x _ p o s i t i o n ,
y _ p o s i t i o n , h e a d e r ) ;

newTag . s e t E l e m e n t I n f o ( new D a t a L i s t <MetaData > ( ) ) ;
newTag . s e t C u r s o r ( new D e f a u l t C u r s o r (

new MetaDataCache ( ) , new MetaDa taDisp lay ( ) ) ) ;
re turn newTag ;

}

d e f s e t U p L e v e l F i e l d ( d e f x _ p o s i t i o n
d e f y _ p o s i t i o n , d e f t r a p T y p e )
throws I n v a l i d T r a p S y m b o l E x c e p t i o n {
d e f t r a p = new Trap ( t r a p T y p e ) ;
d e f t r a p F i e l d =

new T r a p p e d L e v e l F i e l d ( x _ p o s i t i o n ,
y _ p o s i t i o n , t r a p ) ;

t r a p F i e l d . s e t I t e m s ( new GameList ( ) ) ;
t r a p F i e l d . s e t S u b j e c t ( new P l a y e r (

new I n v e n t o r y ( ) , new Body ( ) ) ) ;
re turn t r a p F i e l d ;

}

C
IT

4

C urs o r c r e a t e P o i n t e r ( ) {
W o r k I n P r o g r e s s P r e s e n t a t i o n p r o g r e s s R e p

= new D e f a u l t W o r k I n P r o g r e s s P r e s e n t a t i o n (
Animat ion . HourGlass ) ;

C u r s o r F e a t u r e s f e a t u r e s =
new C u r s o r F e a t u r e s ( p rog re s sRep ,

new I d l e R e p r e s e n t a t i o n ( ) ) ;
Theme theme = new Theme ( new ThemeLocator ( ) ) ;
WindowsMousePointer p o i n t e r =

new WindowsMousePointer ( f e a t u r e s , theme ) ;
p o i n t e r . se tTipOfDayPopup (

new ShowTipEventManager ( ) ) ;
re turn p o i n t e r ;

} / / TASK 6: Java s o l u t i o n

d e f createNewActorForGame ( ) {
d e f a t t a c k T y p e =

new UnarmedAttackType (
DamageType . d e f a u l t ) ;

d e f a t t r i b u t e s =
new S u b j e c t A t t r i b u t e s ( a t t a c k T y p e ,

new R e s i s t a n c e s ( ) ) ;

d e f mons t e r = new H i l l G i a n t ( a t t r i b u t e s ,
new I n t r i n s i c s ( ) , new G i a n t s ( ) ) ;

mons t e r . s e t D r o p p a b l e I t e m G e n e r a t o r (
new RandomItemBui lder ( ) ) ;

re turn mons te r ;
}

C
IT

5

MailAccount c r e a t e N e w U s e r P r i n c i p a l A n d A c c o u n t (
S t r i n g userName , S t r i n g password ) {

M a i l F o r m a t t e r mailDOMCreator =
new M a i l F o r m a t t e r ( ) ;

Mai lFormatReader r a w F i l e I n p u t R e a d e r
= new Mai lFormatReader ( ) ;

Mai lReader m a i l P a r s e r = new Mai lReader (
mailDOMCreator , r a w F i l e I n p u t R e a d e r ) ;

M a i l I n S e r v e r i n c o m i n g S e r v e r =
new M a i l I n S e r v e r (

E n c r y p t i o n T y p e . TLS , Se rve rType . IMAP ) ;
S e n d M a i l S e r v e r o u t g o i n g S e r v e r =

new S e n d M a i l S e r v e r ( E n c r y p t i o n T y p e . TLS ) ;
S e r v e r C o n f i g u r a t i o n s e r v e r D a t a =

new S e r v e r C o n f i g u r a t i o n (
i n c o m i n g S e r v e r , o u t g o i n g S e r v e r ) ;

L o c a l A r c h i v e m a i l L o c a t i o n = new L o c a l A r c h i v e ( ) ;
C r e d e n t i a l s l o g i n I n f o =

new C r e d e n t i a l s ( userName , password ) ;
Mai lAccount r e s u l t = new MailAccount ( m a i l P a r s e r ,

s e r v e r D a t a , m a i l L o c a t i o n , l o g i n I n f o ) ;
U s e r I n f o u s e r P r o f i l e = new U s e r I n f o ( ) ;
r e s u l t . s e t U s e r P r o f i l e ( u s e r P r o f i l e ) ;

re turn r e s u l t ;
}

d e f c r e a t e P r o t o t y p e N e t w o r k F u n c t i o n a l i t y ( ) {

d e f p a s t E v e n t s =
new E v e n t H i s t o r y ( ) ;

d e f i n c i d e n t M a n a g e r =
new NetworkEven tHand le r ( p a s t E v e n t s ) ;

d e f t r a n s m i s s i o n M e t h o d =
T r a n s p o r t P r o t o c o l . TCP ;

d e f e n d P o i n t =
new IPAddre s s ( ) ;

d e f s e r v e r F a c a d e =
new S e r v e r P r o x y (

t r a n s m i s s i o n M e t h o d , e n d P o i n t ) ;
d e f i o =

new F i l e A c c e s s ( ) ;
d e f p a r s e r =

new GameLeve lParse r ( ) ;
d e f f o r m a t t e r =

new S e r i a l i z e r ( io , p a r s e r ) ;
d e f r e s u l t = new NetworkAccess (

i n c i d e n t M a n a g e r , s e r v e r F a c a d e , f o r m a t t e r ) ;
d e f gameInfo = new GameData ( GameState . I d l e ) ;
r e s u l t . s e t N e x t C o n t e n t (

new GamePackage ( gameInfo ) ) ;
re turn r e s u l t ;

}
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Table VI
EXAMPLE SOLUTIONS FOR SEMANTIC ERROR FIXING TASKS (SEFT) AND TYPE ERROR FIXING TASKS (TEFT)

Faulty code Corrected Code (Solution)
SE

FT
1

void d o C u r s o r O n I n t e r a c t i o n ( ) {
Job j o b = new S e t C u r s o r J o b (

cursorOnElement ,
M a i l E d i t o r S e r v e r . g e t I n s t a n c e ( ) .

ge tCur r en tDocumen t ( ) , 0 , 0 ) ;
M a i l E d i t o r S e r v e r . g e t I n s t a n c e ( ) .

addToAct ions ( j o b ) ;
}

vo id d o C u r s o r O n I n t e r a c t i o n ( ) {
Job j o b = new ChangeMailJob ( t h i s ) ;

M a i l E d i t o r S e r v e r . g e t I n s t a n c e ( ) .
addToAct ions ( j o b ) ;

}

SE
FT

2

. . .
i f ( newFie ld . s e t S u b j e c t ( s u b j e c t ) ) {

s u b j e c t . s e t P o s i t i o n (
newFie ld . g e t X _ p o s i t i o n ( ) ,
newFie ld . g e t Y _ p o s i t i o n ( ) ) ;

newFie ld . s u b j e c t I n t e r a c t i o n (
I n t e r a c t i o n T y p e . Move ) ;

}
. . .

. . .
i f ( newFie ld . s e t S u b j e c t ( s u b j e c t ) ) {

s u b j e c t . s e t P o s i t i o n (
newFie ld . g e t X _ p o s i t i o n ( ) ,
newFie ld . g e t Y _ p o s i t i o n ( ) ) ;

newFie ld . s u b j e c t I n t e r a c t i o n (
I n t e r a c t i o n T y p e . Move ) ;

o l d F i e l d . r e m o v e S u b j e c t ( ) ;
}
. . .

T
E

FT
1

/ / ERROR: Wrong C l a s s GameObject
d a r t T r a p P r o p e r t i e s . s e tH i tByTrapMessage (

new GameObject ( symbol ,
" h i t by a d a r t t r a p " , 1 0 ) ) ;

. . .
/ / Code where t h e e r r o r shows up
p u b l i c d e f ge tHi tByTrapMessage ( d e f s u b j e c t ) {

d e f message = m y P r o p e r t i e s . ge tHi tByTrapMessage ( ) .
c o n c a t ( " " + s u b j e c t . getName ( ) ) ;

re turn message ;
}

/ / Remove GameObject
d a r t T r a p P r o p e r t i e s . s e tH i tByTrapMessage (

" h i t by a d a r t t r a p " ) ;
. . .
. . .
/ / No changes here
p u b l i c d e f ge tHi tByTrapMessage ( d e f s u b j e c t ) {

d e f message = m y P r o p e r t i e s . ge tHi tByTrapMessage ( ) .
c o n c a t ( " " + s u b j e c t . getName ( ) ) ;

re turn message ;
}

T
E

FT
2

s t a t i c d e f getTelepor tCommand (
d e f s u b j e c t , d e f l e v e l , d e f x , d e f y ) {
re turn new TeleportCommand (

l e v e l , s u b j e c t , x , y ) ;
}

s t a t i c d e f getTelepor tCommand (
d e f s u b j e c t , d e f l e v e l , d e f x , d e f y ) {
re turn new TeleportCommand (

s u b j e c t , l e v e l , x , y ) ;
}

Table VII
MEASURED DEVELOPMENT TIMES(TIME IN SECONDS) – START = LANGUAGE SUBJECTS STARTED WITH, G = GROOVY, J = JAVA

CIT 1 CIT 2 CIT 3 SEFT 1 SEFT 2 CIT 4 TEFT 1 CIT 5 TEFT 2 Sums
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1 G 286 1212 432 463 663 1258 1141 3062 169 174 812 1397 197 813 584 1021 70 332 4354 9732
2 G 233 507 567 892 1163 828 554 2110 210 828 675 950 130 1009 612 780 106 1308 4250 9212
3 G 382 886 308 516 425 901 476 492 121 990 432 1288 206 280 565 1060 80 783 2995 7196
4 G 124 709 214 345 418 696 181 1117 136 358 536 685 100 263 385 862 67 926 2161 5961
5 G 146 343 215 578 414 1010 104 788 127 92 323 537 98 149 434 785 46 273 1907 4555
6 G 413 563 301 483 520 904 187 458 76 420 367 602 88 927 514 770 44 1571 2510 6698
7 G 522 568 293 418 579 893 489 747 86 170 473 663 172 739 671 797 210 1263 3495 6258
8 G 170 241 209 452 468 1371 583 543 139 360 576 1621 139 258 526 884 127 510 2937 6240
9 G 502 2215 313 748 470 799 1163 984 419 684 858 633 374 1123 374 1838 94 812 4567 9836
10 G 621 1169 1169 1273 846 1274 1015 1707 293 382 1039 1894 298 747 1064 1608 108 398 6453 10452
11 G 166 408 313 497 432 1008 281 1091 74 611 511 808 116 308 450 812 137 413 2480 5956
12 G 288 476 669 516 612 2146 2562 1537 637 471 526 1422 262 847 664 1156 127 1712 6347 10283
13 G 153 1232 196 562 535 611 220 407 467 197 344 575 129 1371 501 564 244 636 2789 6155
14 G 321 897 275 430 793 1720 604 841 181 2262 610 1266 240 1492 409 1211 430 750 3863 10869
15 G 411 494 286 742 381 880 350 801 673 127 443 698 169 278 543 844 116 1186 3372 6050
16 G 271 733 193 682 320 978 626 358 90 416 358 880 137 1337 293 832 53 277 2341 6493
17 G 459 1328 700 881 659 976 324 337 137 614 719 948 78 943 795 1248 97 246 3968 7521
18 J 483 252 315 322 649 1055 1205 153 219 107 791 803 187 772 645 1141 114 450 4608 5055
19 J 562 227 981 386 1038 2169 1930 222 268 774 1212 2505 175 1375 1016 1262 98 547 7280 9467
20 J 375 684 388 419 941 2433 584 197 240 261 1127 549 563 1558 566 1326 108 315 4892 7742
21 J 764 512 558 295 938 1093 1764 377 475 120 3240 1388 286 550 740 971 535 498 9300 5804
22 J 1139 2179 613 1265 574 1411 2256 417 337 167 582 1479 344 1202 735 1054 153 437 6733 9611
23 J 479 575 1178 439 1983 1054 2910 1042 1022 282 1197 818 900 665 782 758 244 2275 10695 7908
24 J 1106 943 895 1042 893 1566 2166 809 927 177 1011 997 324 730 841 1279 103 1604 8266 9147
25 J 914 1620 1051 508 842 869 787 226 325 140 716 741 173 728 732 798 192 381 5732 6011
26 J 673 358 1590 677 711 591 1423 252 177 87 650 640 160 170 691 703 102 594 6177 4072
27 J 907 886 1713 739 773 1581 1642 330 1458 329 920 600 352 732 722 1391 144 761 8631 7349
28 J 1609 2124 4285 756 1697 932 2278 2648 1174 1045 1541 1036 200 2565 1514 1166 116 2285 14414 14557
29 J 1007 556 1883 1308 1757 1419 2000 686 880 742 1665 1034 268 1845 950 2104 146 1004 10556 10698
30 J 484 325 735 349 953 1475 1356 218 320 134 626 1851 210 1118 825 904 215 1371 5724 7745
31 J 560 563 858 669 1069 1513 312 719 2264 251 781 817 258 582 823 1189 147 958 7072 7261
32 J 651 856 637 1085 1401 723 1384 639 885 233 915 735 348 1565 1049 2538 105 752 7375 9126
33 J 480 339 1437 1354 899 883 1822 531 1740 142 720 1004 102 1585 772 1046 170 397 8142 7281
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