
Live Robot Programming

Johan Fabry and Miguel Campusano

PLEIAD and RyCh labs,
Computer Science Department (DCC), University of Chile, Chile

{ jfabry | mcampusa } @dcc.uchile.cl

Abstract. Typically, development of robot behavior entails writing the
code, deploying it on a simulator or robot and running it for testing. If
this feedback reveals errors, the programmer mentally needs to map the
error in behavior back to the source code that caused it before being able
to fix it. This process suffers from a large cognitive distance between the
code and the resulting behavior, which slows down development and can
make experimentation with different behaviors prohibitively expensive.
In contrast, Live Programming tightens the feedback loop, minimizing
cognitive distance. As a result, programmers benefit from an immediate
connection with the program that they are making thanks to an immedi-
ate, ‘live’ feedback on program behavior. This allows for extremely rapid
creation, or variation, of robot behavior and for dramatically increased
debugging speed. To enable such Live Robot Programming, in this arti-
cle we propose a language that provides for live programming of nested
state machines and integrates in the Robot Operating System (ROS).
We detail the language, named LRP, illustrate how it can be used to
rapidly implement a behavior on a running robot and discuss the key
points of the language that enables its liveness.

1 Introduction

Live programming has recently come under the attention thanks to the widely
commented talk by Bret Victor at CUSEC’12 [9]. Its origins can however be
traced back to the early work of Tanimoto on Viva [7]. In this work an argument
is made for maximizing feedback to the programmer through a ‘continuously
active’ system: every edit action triggers computation of the program and the
display of computed values is updated live, as inputs vary.

In a nutshell, Live Programming postulates that programmers benefit from
an immediate connection with the program that they are making. Languages for
live programming therefore provide for an immediate, ‘live’ feedback on program
behavior. Such tightening of the feedback loop lightens the cognitive load of
building accurate mental models of the system when its execution is observed.
This permits, on the one hand, for extremely rapid creation of program behavior
as the effects of variations in the behavior are immediately visible. On the other
hand, it immediately reveals bugs that are due the programmers’ mental model
of the executing program differing from the actual behavior.

Putting this in a robotics context, programming of robot behaviors is how-
ever currently far from ‘live’. Typically, the robot behavior is written, compiled
and then deployed on a simulator (or the robot itself) for testing. The feed-
back loop between writing code and seeing the results is not tight at all. This
wide gap between writing and observing slows down development and can make
experimentation with different behaviors prohibitively expensive.

Considering the languages used for programming robot behavior, arguably
the most successful are those based on hierarchical state machines, e.g. XABSL [4]
or the Kouretes Statechart Editor [8]. Such machines are said to naturally map
to the problem domain, and multiple RoboCup teams have won the competi-
tion using these languages. Live programming in such languages would enable
— while the program is running in a simulator, or on the robot itself — to add
behavior by adding extra states or machines, or to debug behavior by chang-
ing the program on the fly. An example of the latter is a bug in the activation
condition of a transition: It should trigger with the current inputs but does not.
While the program is running, the condition is edited such that it does trigger,
which is immediately observed, confirming that the bug is fixed.

In this text, we introduce a language and associated interpreter for live pro-
gramming of robot behaviors, called LRP. LRP is a language for nested state
machines that provides for a custom visualisation of the program while it runs
and notably has the ability to change the program while it is running. LRP
has an integration with the Robot Operating System (ROS), yet can also be
integrated in any robot software for which an API is available.

This paper presents the following contributions:

– It introduces the concept of live programming for robot behaviors.
– It presents a live programming language for nested state machines, with an

associated interpreter and integration in ROS.
– It defines which code changes allow the interpreter to continue seamlessly.
– It states which program errors needs to be ignored to ensure that the inter-

preter keeps operating in the face of errors.

This paper is structured as follows: The next section introduces the LRP lan-
guage, using a simple line follower program as example. Section 3 then illustrates
how Live Programming in LRP aids in programming the behavior of looking for
the line. This is followed in Section 4 by a discussion on how to ensure liveness.
The paper then presents related work before concluding.

2 The LRP Language

LRP (Live Robot Programming) is a language for nested state machines, which
is arguably a natural paradigm for designing and programming robot behaviors.
The design of the language is inspired by existing languages for robot behavior
programming based on the same paradigm, e.g. XABSL [4], Kouretes State
Charts [8], and the Lua behavior engine [6]. As such, the language is not intended
for computationally intensive applications such as image recognition and the like.

Fig. 1. The LRP editor showing part of the running example of this text.

Instead the goal of the language is to enable the straightforward expression of
complex behaviors based on already processed sensor inputs.

The core difference of LRP with respect to previous work is the focus on
live programming. The editor, shown in Figure 1, includes the integration of
an always-on state machine interpreter whose machines change in sync with the
code as it is being edited, and is coupled to a custom interactive visualization. In
one pane, the tree of nested machines is shown. The programmer selects which
machine to visualize, in another pane, by clicking on a node of the tree. The
machine visualization shows active states and last triggered transitions as well
as the values of variables in scope, all of this updated as the interpreter runs.
Furthermore, the editor also allows for the interpreter to be paused and stepped
as well as the current values of variables to be modified by the programmer.

Considering the UI, there is no inherent requirement for the visualization
to be present, nor even the UI for code editing. Indeed, LRP programs can be
deployed on a ‘bare’ interpreter, which would have no user interface and hence
consume fewer resources. Also, it is not the goal of the LRP UI to give all
possible visualizations for robot sensors, e.g. also showing an image that is being
captured by a camera. Instead we expect that during development the LRP UI
is complemented with other, existing, visualizations that show camera images or
a visualization of the robot’s world model, for example.

2.1 Language Design

LRP is a language that allows for the description of nested state machines.
Nesting in LRP means that a given state may contain a complete state machine
(whose states may again contain a machine, and so on). The language is tightly
coupled with its interpreter, due to its live programming nature and the need to

interface to ‘the outside world’, i.e. the parts of the robot software on which the
behavioral layer relies.

Next to nested machines, states may also have associated actions: an on
entry action, an on exit action and a running action. Actions are snippets of
code in the imperative object-oriented dynamically typed programming language
Smalltalk1. When the state becomes the active state, its on entry action is ex-
ecuted once. This execution is atomic, i.e. it cannot be interrupted by a state
change. When the state stops being the active state, its on exit action is executed
once, also atomically. While the state is the active state, its running action is
atomically executed, once per interpretation loop. If a state with a nested ma-
chine stops being active, the nested machine is stopped and discarded. As part
of this process, the on exit action in the active state of this nested machine is
performed after any machines nested in that state are stopped and discarded.

A machine in LRP may define variables and all actions may read, invoke
methods on, and set all variables in scope. The scope of an action is its enclosing
machine plus the machine that encloses it, and this up to the root of the hierar-
chy. Global variables may also be defined, outside of the root machine. Variables
and actions act as the link from the interpreter to the outside world, allowing
it to be connected to ROS, or indeed any piece of software for which a suitable
API is available.

Machines may also define events: named actions that are the conditions for
transitions. If the result of the evaluation of the action is the boolean true, the
event is said to occur.

Transitions are also declared inside a machine. When an event occurs, tran-
sitions outgoing from the currently active state are inspected to see if they are
stated to trigger on this event. This inspection happens from the root machine
down the tree to the most deeply nested active machine, as executing a nested
machine implies that its enclosing state is active. The direction of inspection
from the root down to the leaves of the tree prioritizes leaving states that are at
a higher level in the tree of machines. Note that this means that the interpreta-
tion of a currently executing machine stops when its enclosing state has become
inactive due to one of its transitions being triggered. Also, in case multiple tran-
sitions may trigger in one machine, the first transition in lexical program order
is triggered.

There are four kinds of transitions: normal transitions, epsilon transitions,
timeout transitions and wildcard transitions. Normal transitions are the usual
transitions we described above, epsilon transitions trigger automatically when
the state is active, i.e. after their on entry action is executed. Timeout transitions
specify a timeout in milliseconds, either as a literal or a variable reference, and
trigger after this timeout. Wildcard transitions have no specific source state,
instead they consider all of the states in their machine as the source state.

A last construct is the bootstrapping construct that specifies the machine to
spawn and which is the start state of that machine. One spawn construct can be

1 This because the interpreter and its connection to ROS is written in Smalltalk.
Fundamentally this may be any other imperative programming language.

placed at top-level, and the on entry actions of states may spawn all machines
that are lexically in scope.

2.2 LRP By Example

To show the concrete syntax of the language and illustrate how it can be used
to provide the behavior logic for a robot, we now present the program for a
line following robot. This program was chosen as it illustrates almost all of the
language features while remaining a conceptually simple task. The robot is a
differential drive robot with a front mounted ground pointing light sensor and a
front bumper. Its task is to first follow a black line painted on the ground until it
bumps an obstacle. It then needs to turn around and follow the line back, until
it again bumps an obstacle.

The code for this behavior is given below, and we will discuss it step by step.

1 (var l i g h t t h r e s h := [1 2 8]) (var maxlook := [1 0 0])
2 (var s tep := [1]) (var back := [1 0]) (var turn := [1 0 0])

The first two lines of code show the declaration of variables, declaring five
different variables: lightthresh, maxlook, step, back, turn. Each is initialized
with their specific value, given between square brackets. These variables are de-
fined at top-level and are hence global variables. In this code they are mainly
used as calibration constants, e.g. lightthresh establishes the threshold be-
tween black and white for the light sensor.

For clarity we do not include here the code that creates the connection to
ROS, nor the full code of how commands are published, as this is not key to the
example. In a nutshell, we represent sensors and motors as variables: respectively
bumper, light and leftmotor, rightmotor, motors. These can later be used in-
side actions. The initialization of these variables consists of code that connects to
the appropriate ROS topics. For example, to be able to publish on the teleoper-
ation topic of a command velocity multiplexer the code is as follows: ROSbridge
publish:’/cmd vel mux/input/teleop’ typedAs: ’geometry msgs/Twist’.
This code results in a Smalltalk object that can be assigned to a variable, e.g.
control. This object can be used to publish messages of the Twist type on
the teleop topic. For example, code to go forward could be: control send: [

:message | message linear x: 10] sends a Twist message where the x value
of the linear part is 10, and all other values are 0.

Note that in the remainder of this text code between square brackets is in
effect Smalltalk code. The result of this code is the result of the evaluation of
the last statement. For example in the variable initialization cases shown above,
these numbers simply evaluate to themselves. As the code that will be presented
in this text is quite simple and can be read more or less like natural language,
we do not discuss the syntax of Smalltalk in detail here.

3 (machine f o l l o w e r
4 (state moving (running [motors forward : s tep]))
5 (on o u t o f l i n e moving −> l ook ing t−l ook ing)
6 (on i n t h e l i n e l ook ing −> moving t−moving)

7 (event o u t o f l i n e [l i g h t read > l i g h t t h r e s h + 1 0])
8 (event i n t h e l i n e [l i g h t read < l i g h t t h r e s h − 1 0])

Line three starts with the definition of a state machine, named follower. On
line four, a state is specified, named moving. This state represents the machine
moving straight, as it is located on top of the line. While this state is active, the
interpreter will send commands on the motors topic, instructing to move forward
for a step distance. Sending the message will happen once per interpretation
loop. Note that between each iteration of this loop a user-specified delay takes
place (which may be set to zero).

Lines 5 and 6 define two transitions. The first triggers on occurrence of the
event outofline, defined in line 7, and causes a transition from the moving

to the looking state. It has as name t-looking. The second is responsible for
transiting back from the looking to the moving state.

Lines 7 and 8 define the events of interest for the above two transitions.
Both use the light sensor, which returns an integer value that is higher as the
measured luminosity is higher. The outofline event on line 7 is triggered when
reading the light sensor produces a value that is higher than the light threshold
plus ten2. The intheline event lowers the threshold by ten and verifies the inverse.

9 (state l ook ing
10 (machine l o oka l go
11 (state l o o k l e f t (running [r ightmotor forward : s tep]))
12 (state r e t u r n l e f t (running [r ightmotor back : s tep]))
13 (state l o o k r i g h t (running [l e f tmoto r forward : s tep]))
14 (state r e t u r n r i g h t (running [l e f tmoto r back : s tep])
15 (onexit [time := time ∗ 2]))
16 (var time := [maxlook])
17 (ontime time l o o k l e f t −> r e t u r n l e f t t−r e t u r n l e f t)
18 (ontime time r e t u r n l e f t −> l o o k r i g h t t−l o o k r i g h t)
19 (ontime time l o o k r i g h t −> r e t u r n r i g h t t−r e t u r n r i g h t)
20 (ontime time r e t u r n r i g h t −> l o o k l e f t t− l o o k l e f t))
21 (onentry (spawn l o oka l go l o o k l e f t)))

The looking state defines a nested state machine, its definition spans the
lines 10 through 20 above. Note that the rightmost column of Figure 1 shows a
diagram of this nested machine. The looking algorithm is an iterative left to right
sweeping motion. Line 10 specifies the name of the nested machine: lookalgo.
The four states (lines 11 through 15) respectively represent looking to the left,
returning back to center from the left, looking to the right, and returning from
the right. The sweeping behavior is orchestrated by the four timeout transitions
of lines 17 to 20. Each times out after the time contained in the time variable.
This initially contains the value of maxlook, but is multiplied by two at the end
of each sweep, when leaving the returnright state (line 15). As a result, the
size of the sweeping motion doubles at the end of each sweep.

2 This statement is evaluated by obtaining the light read value, summing the light
threshold with ten, and testing the given inequality. This results in a boolean value.

Line 21 declares that on entering the looking state, the algorithm is spawned
and the machine starts in the lookleft state. Note that exiting this state hap-
pens whenever the intheline event of line 8 occurs, causing the t-moving tran-
sition of line 6 to trigger. When this happens the lookalgo machine is discarded.

22 (var nobump := [t rue])
23 (event bumping [bumper i s P r e s s e d & nobump])
24 (event ending [bumper i s P r e s s e d & nobump not])
25 (on bumping ∗−> bumpturn t−bumpturn)
26 (on ending ∗−> end t−end)
27 (state bumpturn
28 (onentry [motors backward : back .
29 r ightmotor backward : turn .
30 l e f tmoto r forward : turn .
31 nobump := f a l s e .
32 LRP delaySec : 2]))
33 (eps bumpturn −> l ook ing t−bumplook)
34 (state end)
35)
36 (spawn f o l l o w e r l ook ing)

The last piece of code is responsible for the bumping and stopping behavior.
Recall that on the first bump the robot turns around and follows the line back
and on second bump it should stop. The nobump variable of line 22 records if
the robot has not yet bumped. The events at lines 23 and 24 occur on a bump
sensor press combined with a logical and operation on the variable, in line 23,
and the negation of this variable in line 24.

Lines 25 and 26 are wildcard transitions that trigger on these events. Note
that these have no origin state and the arrow notation is different: including the
asterisk to highlight the ‘wildcard’ nature of these transitions. For example, the
bumping transition takes the machine from all moving, looking, bumpturn and
end states to the bumpturn state.

The bumpturn has a rather complex on entry action: Line 28 instructs both
motors to move back for a distance of back (of line 2). Lines 29 and 30 turn the
robot around, each motor traveling a distance turn (of line 2). Line 31 records
the bump, and line 32 pauses the interpreter for two seconds. The latter is to
allow enough time for all these actions to be exectued by the robot. Note that
pausing the intepreter is possible because the on entry action happens atomically,
i.e. no events are evaluated during this time and no actions are triggered. The
pause also ensures that if the bumper is pressed during this maneuver, the state
is not exited and entered again due to the t-bumpturn transition triggering.
Exit from the state is instead provided by the epsilon transition on line 33. It
executes after the on entry action completes and goes to the looking state.

The state in line 34 does nothing. Note that the state name end has no
special status within the language. The last line of the program: 36, instructs the
interpreter to run the program by spawning the follower machine and making
the looking state the active state. This makes the robot start by looking for the
line.

3 Using LRP: Live Programming of the Looking Behavior

It is difficult to capture the experience of live programming in a piece of text.
The most convincing argument for how it dramatically shortens development
time is seeing it in action, which is arguably why Bret Victor’s keynote [9]
sparked wide interest, and pioneering work [7] has received little attention. As
a textual attempt to convey how live programming with LRP enables rapid
development of a behavior, we now present one scenario of use: developing the
nested machine for the looking algorithm in Section 2.2 (lines 10 to 20). Recall
that the interpreter and visualization of LRP are updated as each character of
code is being edited, e.g. showing new states immediately when their definition
is complete, and highlighting them as soon as they become active.

Consider the setting where the LRP development environment is deployed,
on a simulator of the robot or even the robot itself. The states and values in
the environment reflect the states and values of the robot. The robot starts on
the line, and goes forward until it leaves the line, suppose having the line on
its left hand side. This triggers a transition to the looking state, stopping the
robot. As the state has no behavior defined, the robot is frozen and the LRP
interpreter visualization shows that no further state changes occur. Development
of the looking algorithm may now start.

First, an empty nested machine lookalgo is added. In lookalgo, the states
lookleft and returnleft and their timeout transitions are added (lines 11,
12, 17, 18). In the looking state the on entry spawn statement is added. This
last edit changes the currently active state, which requires the interpreter to be
reset (details on why are in Section 4.1). Interpretation starts in the moving

state, causing the robot to move briefly forward before the interpreter goes to
the looking state, as the robot is still out of the line. The robot makes a left
sweep, detects the line and goes back to moving, again following the line.

All goes well whenever the robot keeps the line to its left hand side. When
it leaves the line to the other side, it however starts looking left, and does not
find it before the timeout occurs. This causes it to move back to the center.
The visualization shows that first the lookleft state is active and after the
timeout a transition is made to the returnleft state. There is however no
outgoing transition from that state shown, because the code in line 18 referes
to a state that does not exist yet! (Details on handling of incorrect code is
given in Section 4.2). This means that the robot will never stop its returning
motion. Seeing this, the programmer pauses the interpeter, which stops the robot
as motor commands are no longer published. The programmer then adds the
lookright and returnright states, let us suppose without the code of line 15.
The interpreter is unpaused, the robot looks to the right and finds the line.

All goes well until the line curves so much that it cannot be found by looking
left or right in the specified timeframe. The robot endlessly sweeps left to right.
The programmer can then, e.g. increase the value of maxlook, immediately in-
creasing the breadth of the sweeps. Experimenting with this value will, in time,
yield the right timeout for this specific case. Alternatively, the programmer may
provide a general solution in the form of the time := time * 2 on exit action

of line 15 omitted above. In that case the sweeps of the robot will progressively
get larger, which is visible immediately after exiting the returnright state.

4 How the LRP Interpreter Ensures Liveness

Running an existing program is not the essence of live programming. The essence
is running a program while it is being changed by the programmer. For example,
adding a new state to a machine should not cause its interpretation to start
afresh. Instead, the currently active state should remain the same and values
of variables should not change as these parts of the code were not changed.
Correctly dealing with program changes allows the program to be adapted while
it is running: adding new behavior, or modifying existing behavior ‘live’. We
present here how this is achieved in LRP.

4.1 Dealing with Program Changes

To deal with program changes, the LRP interpreter briefly pauses when they
occur, to analyze each change and determine in what way it affects the program
being executed. These changes are then applied to the copy of the program used
by the interpreter, before resuming interpretation. This process is described next.

A change in the code is first analysed for syntactical correctness. While a pro-
gram text has syntax errors, no changes are considered. Consequently, program
changes are seen from one syntactically correct program to another syntactically
correct program. They are therefore analyzed at the higher level of machines,
states, transitions and variables. Regarding a program as a group of all these
elements, we consider that a program change results in either elements being
added or removed from this group. For example, when a new machine has been
added to the program, the machine is added to the group, and when a transition
has been deleted from the program, it is removed from the group.

Adding an element to the group never leaves the program in an undefined
situation. The values of existing variables are unmodified, active states will re-
main active, hence running machines may keep running. When interpretation
resumes, it only needs to take the added elements into account. Removing ele-
ments only leaves the program in an undefined situation in one particular case:
when the active state or active machine is removed. In any other case, when
interpretation resumes it simply needs to be without the removed elements.

Regarding the case of an active state or machine being removed, it is clear
that the program can no longer be in that state or machine since it no longer
exists. For the active state case, there is no transition that triggers, so no on
exit action to execute, nor another state to make active. Hence the machine
that contains this state is invalid, which means that the state that contains
that machine is invalid, and so on up to the root machine. Similarly, if an active
machine is removed, the state that contains it is in an undefined situation as well.
As a result, in both cases of the active state or active machine being removed,

the entire program is in an undefined condition. In this case, interpretation of
the program needs to be restarted from scratch.

Note that changing an element, e.g. changing the name of a state, is equiva-
lent to a removal and an addition operation on this group. A straightforward case
of this is changing the name of a transition: the old transition is removed and
the new one is added, going from the same state as the old one and to the same
state as the new one. The effects of other changes are not so straightforward, yet
still sensible: Changing the name of an event causes all transitions using it to no
longer trigger, as these refer to the event name of an event that no longer exists.
Changing the name of a state causes its incoming and outgoing transitions to
no longer be valid, as these use the name of a state that no longer exists. Lastly,
and most significantly, changing the initialization value of a variable causes the
old variable to be removed and a new one with the same name to be added. This
is essentially equivalent to resetting the variable used by the interpreter to the
new initial value.

To conclude: our analysis reveals that nested state machines are actually
quite robust in the context of live programming. The only case where a program
ends up in an undefined condition is when an active state or an active machine
is removed. In this case, and only this case, interpretation of the program needs
to resume from scratch. All other changes allow interpretation of the program
to seamlessly continue.

4.2 Dealing with Program Errors

Code that is syntactically correct, and hence ran by the interpreter, may however
still contain errors. For example, in Section 2.2 we have seen a transition that
specifies the name of a destination state that does not exist yet. The interpreter
should nonetheless keep running, allowing the programmer to keep entering code,
supposing that the missing state will be added at some point. Another example
is actions referring to variables that are not present. Again, the interpreter needs
to keep running, or otherwise the ‘liveness’ aspect of LRP is lost. In general, the
interpreter needs to deal with errors in the program in the most relaxed way
possible, prioritizing keeping itself running in a consistent fashion over stopping
and throwing an error.

To allow this to happen, the LRP interpreter ignores the following errors:

– A transition makes a reference to an event or state that does not exist.

– A spawn statement refers to a machine or state that does not exist.

– A reference is made to a variable that does not exist.

– The execution of an action causes an exception.

Currently, the interpreter ignores the entity that produced the error in the
interpretation loop, e.g. in the first case the transition never triggers. It does
notify when it encounters such errors, using a minimally intrusive error window
that auto-closes after a timeout, in the style of MacOS notification banners.

5 Related Work

The Kouretes Statechart Editor [8] is a visual tool that forms part of a model-
driven process for robot behavior development. In it, state machines are graph-
ically edited, optionally starting from a text-based description, and the model-
driven process then generates the executable code for these machines. There is
however no visualization of execution of the state machine, prohibiting any form
of live programming, nor is there integration with a simulator or robot.

XABSL [4] is a text-based approach to define nested state machines that fea-
tures a variety of support tools. For example, it allows for the automatic creation
of diagrams of the state machine, but however does not include any simulation
support or simulator integration. As a result it has the same drawbacks as the
Kouretes Statechart Editor when compared to LRP.

Niemüller et al. [6] propose the implementation of behaviors in a general-
purpose scripting language. It is however unclear from the text what the concrete
syntax for state machine description is, nor what features the system supports.
Their tools do provide support for visualization of the state machines, including
showing the current state and last taken transitions as the program runs. There
is however no support for updating the state machine while it runs, which is
fundamental to live programming.

Live programming was first proposed by Tanimoto [7], where the goal was set
to provide a maximum of feedback to the programmer while a program is being
constructed. The language presented in that work is VIVA, a visual programming
language for image manipulation. Another, well-known, example of a live visual
programming language is VVVV [2].

Outside of visual programming, the SuperGlue language [5] is a textual lan-
guage that is also based on dataflow programming and extended with object-
oriented constructs. Burckhard et al. add live programming features for UI con-
struction to an existing live programming language [1]. The work of Victor [9]
showcases various examples of live programming in Javascript that produce pic-
tures, animations and games. It can be credited for sparking wide-scale interest in
Live Programming, which helped the crowdfunding of Light Table [3]: an editor
that adds live programming features to a number of general-purpose languages.

None of these languages however consider state machines as their computa-
tional model, which is why we consider them radically different of LRP.

6 Conclusion and Future Work

In this paper we presented LRP: a live programming nested state machine lan-
guage, with a connection to ROS. As a result, it permits live programming of
robot behaviors. We have given an overview of the language, shown how it helps
development, and discussed how its state machine interpreter achieves liveness.

An interesting observation resulting from this work is that nested state ma-
chines are actually quite robust in the context of live programming. The only
cases where program interpretation has to be resumed from scratch is when an

active state is changed or removed, or when an active machine is removed. It
is also worthwhile to notice that LRP is not necessarily limited to the field of
robotics. Since its action blocks can interface with any piece of software, it is
feasible to use LRP as a general nested state machine language.

Immediate future work is the implementation of refactorings that allow re-
naming, e.g. of states, allowing some interpreter restarts to be avoided. Longer
term goals include testing the limits of expressibility of the language by building
a wide variety of behaviors, and adding new language features as required.

Acknowledgments

We would like to thank the following colleagues for fruitful discussions on a pre-
cursor of the LRP language that helped shape LRP itself: Wolfgang De Meuter,
Pablo Guerrero, Andoni Lombide, Serge Stinkwich and Éric Tanter. We thank
ESUG (http://esug.org) for providing sponsoring for this article.

References

1. Burckhardt, S., Fahndrich, M., de Halleux, P., McDirmid, S., Moskal, M., Till-
mann, N., Kato, J.: It’s alive! continuous feedback in UI programming. In: Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 95–104. PLDI ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2491956.2462170

2. vvvv group: vvvv - a multipurpose toolkit, web page http://www.vvvv.org/
3. Kodowa Inc: Light table – the next generation code editor, web page

http://www.lighttable.com/
4. Lötzsch, M., Risler, M., Jüngel, M.: XABSL - A pragmatic approach to behavior

engineering. In: Proceedings of IEEE/RSJ International Conference of Intelligent
Robots and Systems (IROS). pp. 5124–5129. Beijing, China (2006)

5. McDirmid, S.: Living it up with a live programming language. In: Proceedings of
the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems and Applications. pp. 623–638. OOPSLA ’07, ACM, New York, NY, USA
(2007), http://doi.acm.org/10.1145/1297027.1297073

6. Niemller, T., Ferrein, A., Lakemeyer, G.: A Lua-based behavior engine for con-
trolling the humanoid robot Nao. In: Baltes, J., Lagoudakis, M., Naruse, T.,
Ghidary, S. (eds.) RoboCup 2009: Robot Soccer World Cup XIII, Lecture Notes
in Computer Science, vol. 5949, pp. 240–251. Springer Berlin Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-11876-0 21

7. Tanimoto, S.: VIVA: A visual language for image processing. Journal of Visual Lan-
guages & Computing 1(2), 127–139 (June 1990), http://dx.doi.org/10.1016/S1045-
926X(05)80012-6

8. Topalidou-Kyniazopoulou, A., Spanoudakis, N.I., Lagoudakis, M.G.: A case tool
for robot behavior development. In: Chen, X., Stone, P., Sucar, L., Zant,
T. (eds.) RoboCup 2012: Robot Soccer World Cup XVI, Lecture Notes in
Computer Science, vol. 7500, pp. 225–236. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39250-4 21

9. Victor, B.: Inventing on principle. Invited Talk at CUSEC’12, video recording avail-
able at http://vimeo.com/36579366

