
17

Gradual Parametricity, Revisited

MATÍAS TORO, University of Chile, Chile

ELIZABETH LABRADA, University of Chile, Chile

ÉRIC TANTER, University of Chile, Chile and Inria Paris, France

Bringing the benefits of gradual typing to a language with parametric polymorphism like System F, while
preserving relational parametricity, has proven extremely challenging: first attempts were formulated a decade
ago, and several designs were recently proposed. Among other issues, these proposals can however signal
parametricity errors in unexpected situations, and improperly handle type instantiations when imprecise
types are involved. These observations further suggest that existing polymorphic cast calculi are not well
suited for supporting a gradual counterpart of System F. Consequently, we revisit the challenge of designing
a gradual language with explicit parametric polymorphism, exploring the extent to which the Abstracting
Gradual Typing methodology helps us derive such a language, GSF. We present the design and metatheory of
GSF, and provide a reference implementation. In addition to avoiding the uncovered semantic issues, GSF
satisfies all the expected properties of a gradual parametric language, save for one property: the dynamic
gradual guarantee, which was left as conjecture in all prior work, is here proven to be simply incompatible
with parametricity. We nevertheless establish a weaker property that allows us to disprove several claims
about gradual free theorems, clarifying the kind of reasoning supported by gradual parametricity.
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1 INTRODUCTION

There are many approaches to integrate static and dynamic type checking [Abadi et al. 1991;
Bierman et al. 2010; Cartwright and Fagan 1991; Matthews and Findler 2007; Tobin-Hochstadt and
Felleisen 2006]. In particular, gradual typing supports the smooth integration of static and dynamic
type checking by introducing the notion of imprecision at the level of types, which induces a notion
of consistency between plausibly equal types [Siek and Taha 2006]. A gradual type checker does
a best effort statically, treating imprecision optimistically. The runtime semantics of the gradual
language detects at runtime any invalidation of optimistic static assumptions. Such detection is
usually achieved by compilation to an internal language with explicit casts, called a cast calculus. In
addition to being type safe, a gradually-typed language is expected to satisfy a number of properties,
in particular that it conservatively extends a corresponding statically-typed language, that it can
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faithfully embed dynamically-typed terms, and that the static-to-dynamic transition is smooth, a
property formally captured as the (static and dynamic) gradual guarantees [Siek et al. 2015a].

Since its early formulation in a simple functional language [Siek and Taha 2006], gradual typing
has been explored in a number of increasingly challenging settings such as subtyping [Garcia
et al. 2016; Siek and Taha 2007], references [Herman et al. 2010; Siek et al. 2015b], effects [Baña-
dos Schwerter et al. 2014, 2016], ownership [Sergey and Clarke 2012], typestates [Garcia et al. 2014;
Wolff et al. 2011], information-flow typing [Disney and Flanagan 2011; Fennell and Thiemann 2013;
Toro et al. 2018a], session types [Igarashi et al. 2017b], refinements [Lehmann and Tanter 2017],
set-theoretic types [Castagna and Lanvin 2017], Hoare logic [Bader et al. 2018] and parametric
polymorphism [Ahmed et al. 2011, 2017; Igarashi et al. 2017a; Ina and Igarashi 2011; Xie et al. 2018].
In the case of parametric polymorphism, a long-standing challenge has been to prove that the

gradual language preserves a rich semantic property known as relational parametricity [Reynolds
1983], which dictates that a polymorphic value must behave uniformly for all possible instantiations.
The first gradual language to come with a proof of parametricity is the cast calculus λB [Ahmed et al.
2017], recently used as a target language by Xie et al. [2018]. Another recent effort is System FG ,
an actual gradual source language (i.e. without explicit casts), which is compiled to a cast calculus
akin to λB, called System FC [Igarashi et al. 2017a].
Contributions. This work starts from the novel identification of design issues in existing

proposals, especially in their dynamic semantics. In short, parametricity errors can be raised in
unexpected situations, and type instantiations are ignored when imprecise types are involved.
Consequently, we argue that neither λB nor System FC are adequate targets for an explicitly-
parametric gradual language (ğ2).

To this end, we introduce GSF, a gradual counterpart of System F that addresses the design issues
identified in prior work and satisfies parametricity (ğ8). We explicitly lay out the design principles,
goals and non-goals of GSF and introduce the language briefly through examples (ğ3). We then
explain how we derive GSF from a variant of System F called SF (ğ4), by following the Abstracting
Gradual Typing methodology (AGT) [Garcia et al. 2016]. While the statics of GSF follow naturally
from SF using AGT (ğ5), the dynamic semantics are more challenging (ğ6/ğ7). GSF satisfies the
expected properties of gradual languages (ğ5/ğ7), except the dynamic gradual guarantee. This
property was left open as a conjecture in prior work; here we prove that it is in fact incompatible
with parametricity (ğ9). We uncover a novel, weaker property that GSF satisfies, which allows us
to disprove several claims related to gradual free theorems for imprecise type signatures (ğ10).

Complete definitions and proofs of the main results can be found in the extended version [Toro
et al. 2018b]. Additionally, GSF is implemented as an interactive prototype that exhibits both typing
derivations and reduction traces. All the examples mentioned in this paper, as well as others, are
readily available in the online demo: https://pleiad.cl/gsf.

2 THE NEED TO REVISIT GRADUAL PARAMETRICITY

We start with a quick introduction to parametric polymorphism and parametricity, beforemotivating
gradual parametricity through examples and finally exposing different issues in both the static and
dynamic semantics of existing languages.

2.1 Background: Parametric Polymorphism

Parametric polymorphism allows the definition of terms that can operate over any type, with the
introduction of type variables and universally-quantified types. For instance, a function of type
∀X .X → X can be used at any type, and returns a value of the same type as its actual argument.
For the sake of this work, it is important to recall two crucial distinctions that apply to languages
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with parametric polymorphism, one syntacticÐwhether polymorphism is explicit or implicitÐand
one semanticÐwhether polymorphic types impose strong behavioral guarantees or not.

Explicit vs Implicit. In a language with explicit polymorphism, such as the Girard-Reynolds
polymorphic lambda calculus (a.k.a. System F) [Girard 1972; Reynolds 1974], the term language
includes explicit type abstraction ΛX .e and explicit type application e [T ], as illustrated next:

let f : ∀X .X → X = ΛX.λx:X.x in f [Int] 10

The function f has the polymorphic (or universal) type ∀X .X → X . By applying f to type Int (we
also say that f is instantiated to Int), the resulting function has type Int → Int; it is then passed the
number 10. Hence the program evaluates to 10.

In contrast to this intrinsic, Church-style formulation, the Curry-style presentation of polymor-
phic type assignment [Curry et al. 1972] does not require type abstraction and type application
to be reflected in terms. This approach, known as implicit polymorphism, has inspired many
languages such as ML and Haskell. Technically, implicit polymorphism induces a notion of sub-
typing that relates polymorphic types to their instantiations [Mitchell 1988; Odersky and Läufer
1996]; e.g. ∀X .X → X <: Int → Int. Implicitly-polymorphic languages generally use an explicitly-
polymorphic language underneath (e.g. GHC Core), providing the convenience of implicitness
through an inference phase that produces an explicitly-annotated program. In essence, the use
of the subtyping judgment ∀X .X → X <: Int → Int is materialized in terms by introducing an
explicit instantiation [Int], and vice-versa, the use of the judgment Int → Int <: ∀X .Int → Int is
materialized by inserting a type abstraction constructor ΛX .

Genericity vs. Parametricity. Some languages with universal type quantification also support
intensional type analysis or reflection, which allows a function to behave differently depending on
the type to which it is instantiated. For instance, in Java, a generic method of type ∀X .X → X can
use instanceof to discriminate the actual type of the argument, and behave differently for String,
say, than for Integer. Therefore these languages only support genericity, i.e. the fact that a value of
a universal type can be safely instantiated at any type.1

Parametricity is a much stronger interpretation of universal types, which dictates that a poly-
morphic value must behave uniformly for all possible instantiations [Reynolds 1983]. This implies
that one can derive interesting theorems about the behavior of a program by just looking at its
type, hence the name łfree theoremsž coined by Wadler [1989]. For instance, one can prove using
parametricity that any polymorphic list permutation function commutes with the polymorphic
map function. Technically, parametricity is expressed in terms of a (type-indexed) logical relation
that denotes when two terms behave similarly when viewed at a given type. All well-typed terms of
System F are related to themselves in this logical relation, meaning in particular that all polymorphic
terms behave uniformly at all instantiations [Reynolds 1983].
Simply put, if a value f has type ∀X .X → X , genericity only tells us that f [Int] 10 reduces to

some integer, while parametricity tells the much stronger result that f [Int] 10 necessarily evaluates
to 10 (i.e. f has to be the identity function). In the context of gradual typing, Ina and Igarashi [2011]
have explored genericity with a gradual variant of Java. All other work has focused on the challenge
of enforcing parametricity [Ahmed et al. 2011, 2017; Igarashi et al. 2017a; Xie et al. 2018].

2.2 Gradual Parametricity in a Nutshell

Basics Gradual parametricity supports imprecise typing information, yet ensures that assumptions
about parametricity are enforced at runtime whenever they are not provable statically. In the
following program, function f expects a function g of type ∀X .X → X as argument. It is applied

1We call this property genericity, by analogy to the name generics in use in object-oriented languages like Java and C#.
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to an argument h of the unknown type. By consistency, this program is well-typed; however the
compliance of h with respect to its assumed parametric signature is unknown statically.

let f = λg:(∀X .X → X ).g [Int] 10 in let h : ? = ... in f h

By parametricity, function f can deduce that g behaves like the identity function (ğ2.1). In presence
of gradual typesÐas in any variant of System F with errors and non-terminationÐthis conclusion
should be relaxed: gradual simple types admit both non-termination [Siek and Taha 2006] and
runtime type errors. Therefore, as a consequence of parametricity, we can prove that if the program
above terminates, it should either produce 10, or fail with a runtime error, possibly denoting that h
was in fact not a proper identity function.

Let us consider three possible implementations of h:

h1 = ΛX.λx:X.x h2 = ΛX.λx:?.x h3 = ΛX.λx:?.x+1

Function h1 is the standard System F identity function, and function h2 is a less precise version,
which behaves identically. Therefore, using either of these functions in the program above produces
the result 10. Conversely, function h3 is not a proper identity function. Note that the function is
well-typed, because x has type ? in the body. Also, using h3 in the program above is type safe,
because f happens to instantiate its argument at type Int, so execution could proceed safely without
errors and yield 11; this would however be a violation of parametricity, so an error should be raised.

State of the Art. While the basics of gradual parametricity are well understood, the details are
tricky. In particular, establishing that a gradual parametric language enforces parametricity has
been a long-standing open issue: early work on the polymorphic blame calculus did not prove
parametricity [Ahmed et al. 2009, 2011]; only very recent work on a variant of that calculus, λB, has
achieved this result [Ahmed et al. 2017]. In fact, λB is a cast calculus, not a gradual source language,
meaning that the program written above would not be valid; explicit casts should be sprinkled
in different places to achieve the same result. Igarashi et al. recently developed a gradual source
language, System FG , which does support the intended lightweight, cast-free syntax of gradual
languages. Following the early tradition of gradual typing [Siek and Taha 2006], the semantics of
System FG are given by translation to a cast calculus, System FC , which is a close cousin of λB.
Igarashi et al. in fact do not prove parametricity, but conjecture that due to the similarity between
System FG and λB, parametricity should hold. Xie et al. [2018] develop a language with implicit
polymorphism (here referred to as CSA), which compiles to λB and therefore satisfies parametricity.
On the metatheoretic front, beyond parametricity, there are other important properties that

are relevant for gradual languages, most notably the conservative extension and the gradual
guarantees [Siek et al. 2015a]. The former states that, on fully static programs, a gradual language
should behave exactly like its static counterpart. The latter states that making types less precise does
not introduce static or dynamic type errors. λB is not a conservative extension of System F (ğ2.3),
and the gradual guarantees are left as an open question. System FG is a conservative extension of
System F, and CSA of an implicit variant of System F. Both System FG and CSA satisfy the static
gradual guarantee, although System FG uses an ad hoc notion of precision tuned to that effect
(ğ2.3). The dynamic gradual guarantee for both System FG and CSA are still open questions.

Finally, gradual free theorems about imprecise type signatures have not been formally studied,
beyond a number of claims that we mention below and disprove in ğ10.

2.3 Static Semantics Issues

While the static semantics of simple gradual languages are uncontroversial, devising the static
semantics of gradual polymorphic languages has proven to be fairly challenging, yielding systems
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that are arguably hard to grasp. We highlight the most salient issues with λB and System FG below,
and then relate to CSA, which addresses them to some extent.

Mixing Explicit and Implicit Polymorphism. Both λB and System FG are languages with
explicit polymorphism, i.e. with explicit type abstraction and type application terms. However,
instead of focusing on explicit polymorphism only, both languages accommodate some form of
implicitness, but with different flavors. Consider the type of a polymorphic identity function,
∀X .X → X . In λB this type is compatible with Int → Int, which is a defining feature of implicit
polymorphism. More surprisingly, this type is also compatible with Int → Bool. (Runtime errors
will account for the obvious mistake.) This means in particular that λB is not a proper conservative
extension of System F, as both type systems disagree on some fully static terms. Technically, instead
of the traditional consistency relation, λB introduces two close but distinct relations on types, called
convertibility and compatibility, in order to orchestrate these non-trivial semantics. Conversely,
System FG relies on a notion of consistency, and is a proper conservative extension of System F. As
an explicitly polymorphic language, System FG does not relate ∀X .X → X with any of its static
instantiations. However, it does relate that type with ? → ?, considered to be quasi-polymorphic, on
the basis that using the unknown type should bring some of the flexibility of implicit polymorphism.

Ad-hoc Precision. Conversely to System FG , λB has no notion of type precision, and does not
discuss any of the gradual guarantees. The precision relation of System FG features some constraints
that might be surprising to programmers. Specifically, System FG allows loss of precision only in
non-parametric positions of a polymorphic type. For instance, ∀X .X → Int is considered more
precise than ∀X .X → ?, but unrelated to ∀X .? → Int. Because precision induces consistency, it
means that ∀X .X → Int and ∀X .? → Int are inconsistent with each other. This choice is motivated
by the desire to avoid a counterexample of the gradual guarantee: they claim that a function of type
∀X .? → X must fail on all inputs in order to respect parametricity (we disprove this claim in ğ10),
so accepting that this type is less precise than ∀X .X → X breaks the dynamic gradual guarantee.
But tailoring the precision relation to avoid a class of counterexamples is not benign. First,

changing the definition of precision to accommodate a theorem does not necessarily result in a
programmer’s expectations being adjusted. Let us recall that the gradual guarantees were introduced
by Siek et al. [2015a] in order to formally capture the expectations of programmers using gradual
languages. The restriction on precision imposed by System FG breaks the intuition of programmers
that, starting program from a well-typed program, removing static type information yields a
program that is by definition less preciseÐand should also be well-typed.
Second, the restricted rule excludes instances of precision that are harmless for the dynamic

gradual guarantee. For instance, in System FG , ∀X .X → X is not more precise than ∀X .X → ?,
despite the fact that a function of type ∀X .X → ? can be a proper identity function (ğ10).

Third, Igarashi et al. [2017a] only prove the static guarantee based on this ad hoc precision, and
leave the dynamic guarantee as a conjecture, so it is unclear whether the restriction on precision
imposed by System FG is indeed sufficient.

Separating Concerns. Recently, Xie et al. [2018] raise similar concerns about the static semantics
of λB and System FG , in particular regarding the mixing of explicit and implicit polymorphism. In
response, they clearly separate the subtyping relation induced by implicit polymorphism from the
consistency relation induced by gradual types. Their notion of consistent subtyping extends the
notion of Siek and Taha [2007]. As a result, CSA features intuitive and straightforward definitions
of precision and consistency, while accommodating the flexibility of implicit polymorphism in full.

We fully concur with the necessity to untangle implicitness from consistency in order to achieve
a principled design. Xie et al. leave open the question of designing an explicitly-polymorphic gradual
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language. Additionally, Xie et al. do not deal with the dynamic semantics of their language beyond
a translation to λB. Therefore CSA inherits both the virtues of λB, such as parametricity, and its
issues, uncovered next.2

2.4 Dynamic Semantics Issues

In the design of gradually-typed languages, cast calculi are typically used as target languages to
give runtime semantics to gradual programs. However, as observed by Garcia et al. [2016], there is
little justification or guidance available to design or choose a cast calculus for interpreting a given
gradual source language. To this date, only the Abstracting Gradual Typing methodology (AGT)
provides a systematic approach to derive the dynamic semantics of gradual languages by directly
giving meaning to gradual typing derivations [Garcia et al. 2016].
Since the early work on the polymorphic blame calculus [Ahmed et al. 2009, 2011], all existing

work has built upon variants of that cast calculus. While a cast language like λB can be used as
a source language [Ahmed et al. 2017], λB has been used in recent work as the target language
of choice for gradual source languages [Igarashi et al. 2017a; Xie et al. 2018]. In this section, we
identify two questionable design decisions in both λB and System FC that arguably make them
inadequate as internal languages of a gradual version of System F.

Excess of Failure. Consider the following example, written in System FG (the λB and System FC
versions are more verbose because of explicit casts):

let f : ∀X .X → ? = ΛX.λx:X.x in (f [Int] 1) + 1

What would the programmer expect out of this program? While the annotated return type of f
is left unknown, the function itself is the System F identity function. Therefore, one might expect
that instantiating the function to Int, passing 1 and adding 1, should yield 2 as a result.

However, in both λB and System FC , the above program fails with a runtime error. The reason is
that the result of f [Int] 1 is sealed, and therefore unusable directly. Ahmed et al. [2011] justify
this behavior (already present in early work [Ahmed et al. 2009]), or the alternative of always failing
before returning, based on a claim about gradual free theorems. Intuitively, this can be surprising
because the underlying value is the System F identity function, which does behave parametrically;
it is therefore unclear what parametricity violation is being reported. As we will see later, this
failing behavior is in fact not formally demanded by parametricity (ğ10).

Lack of Failure. A major interest of gradual types is that they soundly augment the expressiveness
of the original static type system. Let us illustrate first in a simply-typed setting (STLC refers to the
simply-typed lambda calculus with base types):

- Consider the STLC term t = λx : _.x , which behaves as the identity function. t is incomplete
because the type annotation on x is missing so far.

- t is operationally valid at different types, but it cannot be given a general type in STLC. Its type
has to be fixed at either Int → Int, Bool → Bool, etc.

- Intuitively, a proper characterization of t requires going from simple types to parametric poly-
morphism, such as System F. In System F, we could use the type ∀X .X → X to precisely specify
that t can be applied with any argument type and return the same type.

- With a gradual variant of STLC, we can give term t the imprecise type ? → ? to statically capture
the fact that t is definitely a function, without committing to specific domain and codomain types.

- This lack of precision is soundly backed by runtime enforcement, such that the term (t 3) 1
evaluates to a runtime type error.

2The implicit polymorphism of Xie et al. [2018] faces other challenges, most notably the lack of coherence of the runtime
semantics. This issue is entirely related to implicit polymorphism and is therefore not addressed here.
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The exact same line of reasoning should apply when starting from System F, as follows:

- Consider the System F term t = λx : _.(x [Int]), which behaves as an instantiation function to Int.
t is incomplete because the type annotation on x is missing so far.

- t is operationally valid at different types, but cannot be given a general type in System F. It has to
be fixed at either (∀X .X→X )→(Int→ Int), (∀XY .X→Y→X )→(∀Y .Int→Y→ Int), etc.

- Intuitively, a proper characterization of t requires going from System F to higher-order poly-
morphism, such as System Fω . In System Fω , we could use the type ∀P .(∀X .P X ) → (P Int) to
precisely specify that t instantiates any polymorphic argument to Int.

- With a gradual variant of System F, we ought to be able to give term t the imprecise type (∀X .?) → ?
to statically capture the fact that t is definitely a function that operates on a polymorphic argument,
without committing to a specific domain scheme and codomain type.

- This lack of precision ought to be soundly backed by runtime enforcement, such that, given
id : ∀X .X → X , the term (t id) true should evaluate to a runtime type error.

However, the runtime semantics of λB and System FC suffer from a fundamental issue that breaks
the argument above: they do not respect type instantiations that involve the unknown type, and
consequently do not fail as expected.3 Below is another simple example in System FG in which the
polymorphic identity function is instantiated to Int and passed a Bool value:

let g : ? = ΛX.λx:X.x in g [Int] true

This System FG program (and its translation to λB) returns true, despite the explicit instantiation
to Int. Internally, this happens because g is first consistently considered to be of type ∀X .? in order
to accommodate the type instantiation, but then the instantiation yields a substitution of Int for
X in ?, which in both languages is just ?. There is no tracking of the decision to instantiate the
underlying value to Int. Consequently, current polymorphic cast calculi such as λB and System FC
are inadequate to serve as the runtime support of a gradual variant of System F.

3 GSF, INFORMALLY

This paper presents the design, semantics and metatheory of GSF, a gradual counterpart of System F
that addresses the issues raised above. This section focuses on the informal aspects of GSF: design
principles and methodology, as well as some illustrative examples of GSF in action.

3.1 Design Principles, Goals and Non-Goals

Considering the many concerns involved in developing a gradual language with parametric poly-
morphism, we should be very clear about the principles, goals and non-goals of a specific design.
In designing GSF, we respect the following design principles:

Explicit polymorphism: GSF is a gradual counterpart to System F, and as such, is a fully explicitly
polymorphic language: type abstraction and type application are part of the term language, reflected
in types. GSF gradualizes type information, not term structure.
Simple statics: GSF must embody the complexity of dynamically enforcing parametricity solely
in its dynamic semantics; its static semantics should be as straightforward as possible.
Natural precision: Precision is intended to capture the level of static typing information of a
gradual type, with ? as the least precise and static types as the most precise [Siek et al. 2015a]. GSF
should preserve this simple intuition.

The mandatory goals for GSF, i.e. the properties that it should definitely satisfy, are:

3In System FC , (t id) true fails because ∀X .? is not deemed consistent with ∀X .X → X . Consequently, t must be declared
to take an argument of type ? instead of ∀X .?. The result is the same as in λB however: no runtime error is raised.
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Type safety: GSF should be type safe, meaning all programs should either evaluate to a value,
halt with a runtime error, or diverge. Well-typed GSF terms should not get stuck.
Conservative extension: GSF should be a conservative extension of System F: both languages
should coincide in their static and dynamic semantics for fully static programs.
Faithful instantiations: GSF should respect type instantiations. In particular, explicit instantia-
tions of imprecise types should be enforced.
Parametricity: GSF should enforce the notion of parametricity understood for gradual pro-
grams [Ahmed et al. 2017]. In particular, a polymorphic function should behave uniformly across
all its instantiationsÐi.e. always take related inputs to related outputs, or always fail or diverge.
Static gradual guarantee: By virtue of the simple statics principle stated above, GSF should
satisfy the static gradual guarantee, i.e. typeability should be monotonic with respect to the natural
notion of precision.

Similarly important are the explicit non-goals that we adopt when designing GSF:

Dynamic gradual guarantee: While GSF should strive to satisfy the dynamic gradual guarantee,
this should not be at the expense of any of the above-stated principles and goals. In other words,
the dynamic gradual guarantee is the first candidate property to abandon (or weaken) if need be.
Implicit polymorphism: While implicit polymorphism is certainly a desirable feature for usabil-
ity, the integration of implicit polymorphism in GSF is future work.
Blame tracking: Tracking blame in order to report more informative error messages is valuable,
but most important is to properly identify error cases. As discussed in ğ2.4, λB and System FG both
miss important errors and raise errors in unexpected situations.
Performance: We focus on the semantics and meta-theoretical properties of GSF, without explic-
itly taking into account efficiency considerations such as pay-as-you-go [Igarashi et al. 2017a; Siek
and Taha 2006], space efficiency [Herman et al. 2010; Siek and Wadler 2010], cast elimination [Ras-
togi et al. 2012], etc. Optimizing the dynamic semantics of GSF is left for future work.

3.2 Design Methodology

In order to assist language designers in crafting new gradual languages, Garcia et al. [2016] proposed
the Abstracting Gradual Typing methodology (AGT, for short). The promise of AGT is that, starting
from a specification of the meaning of gradual types in terms of the set of possible static types
they represent, one can systematically derive all relevant notions, including precision, consistent
predicates (e.g. consistency and consistent subtyping), consistent functions (e.g. consistent meet
and join), as well as a direct runtime semantics for gradual programs, obtained by reduction of
gradual typing derivations augmented with evidence for consistent judgments.
The AGT methodology has so far proven effective to assist in the gradualization of a number

of disciplines, including effects [Bañados Schwerter et al. 2014, 2016], record subtyping [Garcia
et al. 2016], set-theoretic types [Castagna and Lanvin 2017], union types [Toro and Tanter 2017],
refinement types [Lehmann and Tanter 2017] and security types [Toro et al. 2018a]. The applicability
of AGT to gradual parametricity is an open question repeatedly raised in the literatureÐsee for
instance the discussions of AGT by Igarashi et al. [2017a] and Xie et al. [2018]. Considering the
variety of successful applications of AGT, and the complexity of designing a gradual parametric
language, in this work we decide to adopt this methodology, and report on its effectiveness.

3.3 GSF in Action

Recall the example from ğ2.2, in which a function f defined as:

let f = λg:(∀X .X → X ).g [Int] 10
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is applied to a function h of unknown type. GSF behaves exactly as described with each of the three
variant implementations of h, namely:

let h : ? = ΛX.λx:X.x in f h ----> 10

let h : ? = ΛX.λx:?.x in f h ----> 10

let h : ? = ΛX.λx:?.x+1 in f h ----> error

In the last case, the runtime error is raised when the body of the function attempts to perform an
addition, since this type-specific operation is a violation of parametricity.

The fact that GSF adopts explicit polymorphism à la System F means that a polymorphic type is
not consistent with any of its instantiations. In practice, this means that:

let h : ? = λx:?.x in f h ----> error

The runtime error occurs when the body of f performs the type application, because the value
bound to g is not of the appropriate constructor (Λ). If changing the definition of h to include the Λ
constructor is not an option, one can perform this adaptation explicitly upon application of f:

let h : ? = λx:?.x in f (ΛX.h) ----> 10

Finally, GSF does not report spurious parametricity violations, and enforces type instantiations
even when applied to an imprecisely-typed value:

let f : ∀X .X → ? = ΛX.λx:X.x in (f [Int] 1) + 1 ----> 2

let g : ? = ΛX.λx:X in g [Int] true ----> error

Hence GSF addresses the issues in the dynamic semantics of λB and System FC , and soundly
augments the expressiveness of System F (ğ2.4). Other illustrative examples are available online.

4 PRELIMINARY: THE STATIC LANGUAGE SF

We systematically derive GSF by applying AGT to a largely standard polymorphic language similar
to System F, called SF (Figure 1). In addition to the standard System F types and terms, SF includes
base types B inhabited by constants b, typed using the auxiliary function ty, and primitive n-ary
operations op that operate on base types and are given meaning by the function δ . SF also includes
pairs ⟨t1, t2⟩, and the associated projection operations πi (t),4 as well as type ascriptions t :: T .

The statics are standard. The typing judgment is defined over three contexts: a type name store
Σ (explained below), a type variable set ∆ that keeps track of type variables in scope, and a standard
type environment Γ that associates term variables to types. We adopt the convention of using
partial type functions to denote computed types in the rules: dom and cod for domain and codomain
types, inst for the resulting type of an instantiation, and proji for projected types. These partial
functions are undefined if the argument is not of the appropriate shape. We also make the use of
type equality explicit as a premise whenever necessary. These conventions are helpful for lifting the
static semantics to the gradual setting [Garcia et al. 2016]. For closed terms, we write ·; ·; · ⊢ t : T ,
or simply ⊢ t : T .

The dynamics are standard call-by-value semantics, specified using reduction frames. The only
peculiarity is that they rely on runtime type generation: upon type application, a fresh type name α
is generated and bound to the instantiation type T in a global type name store Σ . The notion of
reduction and reduction rules all carry along the type name store. While type names only occur at
runtime, and not in source programs, reasoning about SF terms as they reduce requires accounting
for programs with type names in them. This is why the typing rules are defined relative to a type
name store as well. Similarly, type equality is relative to a type name store: a type name α is
considered equal to its associated type in the store. The recursive definition of equality modulo

4We omit the constraint i ∈ { 1, 2 } when operating on pairs throughout this paper.
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x ∈ Var,X ∈ TypeVar,α ∈ TypeName Σ ∈ TypeName
fin
⇀ Type,∆ ⊂ TypeVar, Γ ∈ Var

fin
⇀ Type

T ::= B | T → T | ∀X .T | T ×T | X | α (types)
t ::= b | λx : T .t | ΛX .t | ⟨t , t⟩ | x | t :: T | op(t) | t t | t [T ] | πi (t) (terms)
v ::= b | λx : T .t | ΛX .t | ⟨v,v⟩ (values)

Σ ;∆; Γ ⊢ t : T Well-typed terms

(Tb)
ty(b) = B Σ ;∆ ⊢ Γ

Σ ;∆; Γ ⊢ b : B
(Tλ)

Σ ;∆; Γ,x : T ⊢ t : T ′

Σ ;∆; Γ ⊢ λx : T .t : T → T ′

(TΛ)
Σ ;∆,X ; Γ ⊢ t : T Σ ;∆ ⊢ Γ

Σ ;∆; Γ ⊢ ΛX .t : ∀X .T
(Tpair)

Σ ;∆; Γ ⊢ t1 : T1 Σ ;∆; Γ ⊢ t2 : T2

Σ ;∆; Γ ⊢ ⟨t1, t2⟩ : T1 ×T2

(Tx)
x : T ∈ Γ Σ ;∆ ⊢ Γ

Σ ;∆; Γ ⊢ x : T
(Tasc)

Σ ;∆; Γ ⊢ t : T Σ ;∆ ⊢ T = T ′

Σ ;∆; Γ ⊢ t :: T ′ : T ′

(Top)

Σ ;∆; Γ ⊢ t : T1 ty(op) = T2 → T

Σ ;∆ ⊢ T1 = T2

Σ ;∆; Γ ⊢ op(t) : T
(Tapp)

Σ ;∆; Γ ⊢ t1 : T1 Σ ;∆; Γ ⊢ t2 : T2
Σ ;∆ ⊢ dom(T1) = T2

Σ ;∆; Γ ⊢ t1 t2 : cod(T1)

(TappT)
Σ ;∆; Γ ⊢ t : T Σ;∆ ⊢ T ′

Σ ;∆; Γ ⊢ t [T ′] : inst(T ,T ′)
(Tpairi )

Σ ;∆; Γ ⊢ t : T

Σ ;∆; Γ ⊢ πi (t) : proji (T )

dom : Type⇀ Type

dom(T1 → T2) = T1
dom(T ) undefined o/w

cod : Type⇀ Type

cod(T1 → T2) = T2
cod(T ) undefined o/w

inst : Type2 ⇀ Type

inst(∀X .T ,T ′) = T [T ′/X ]

inst(T ,T ′) undefined o/w

proji : Type⇀ Type

proji (T1 ×T2) = Ti
proji (T ) undefined o/w

Σ ;∆ ⊢ T = T Type equality

⊢ Σ

Σ ;∆ ⊢ B = B

⊢ Σ X ∈ ∆

Σ ;∆ ⊢ X = X

Σ ;∆ ⊢ T1 = T
′
1 Σ ;∆ ⊢ T2 = T

′
2

Σ ;∆ ⊢ T1 → T2 = T
′
1 → T ′

2

Σ ;∆,X ⊢ T1 = T2

Σ ;∆ ⊢ ∀X .T1 = ∀X .T2

Σ ;∆ ⊢ T1 = T
′
1 Σ ;∆ ⊢ T2 = T

′
2

Σ ;∆ ⊢ T1 ×T2 = T
′
1 ×T ′

2

⊢ Σ α ∈ dom(Σ)

Σ ;∆ ⊢ α = α

Σ ;∆ ⊢ Σ(α) = T

Σ ;∆ ⊢ α = T

Σ ;∆ ⊢ T = Σ(α)

Σ ;∆ ⊢ T = α

Σ ▷ t −→ Σ ▷ t Notion of reduction

Σ ▷ v :: T −→ Σ ▷ v Σ ▷ op(v) −→ Σ ▷ δ (op,v) Σ ▷ (λx : T .t) v −→ Σ ▷ t[v/x]

Σ ▷ (ΛX .t) [T ] −→ Σ,α := T ▷ t[α/X ] where α < dom(Σ) Σ ▷ πi (⟨v1,v2⟩) −→ Σ ▷ vi

Σ ▷ t 7−→ Σ ▷ t Evaluation frames and reduction

f ::= □ :: T | op(v,□, t) | □ t | v □ | □ [T ] | ⟨□, t⟩ | ⟨v,□⟩ | πi (□) (term frames)

Σ ▷ t −→ Σ
′
▷ t ′

Σ ▷ t 7−→ Σ
′
▷ t ′

Σ ▷ t 7−→ Σ
′
▷ t ′

Σ ▷ f [t] 7−→ Σ
′
▷ f [t ′]

Fig. 1. SF: Simple Static Polymorphic Language with Runtime Type Generation
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C : GType → P∗(Type)

C (B) = { B }

C (G1 → G2) = {T1 → T2 | T1 ∈ C (G1), T2 ∈ C (G2)}

C (G1 ×G2) = {T1 ×T2 | T1 ∈ C (G1), T2 ∈ C (G2)

C (X ) = {X }

C (α ) = { α }

C (∀X .G) = {∀X .T | T ∈ C (G)}

C (?) = Type

A : P∗(Type) → GType

A({ B }) = B

A({Ti1 → Ti2 }) = A({Ti1 }) → A({Ti2 })

A({Ti1 ×Ti2 }) = A({Ti1 }) × A({Ti2 })

A({X }) = X

A({ α }) = α

A({ ∀X .Ti }) = ∀X .A({Ti })

A({Ti }) = ? otherwise

Fig. 2. Type concretization (C) and abstraction (A)

type names is necessary to derive equalities [Igarashi et al. 2017a]. For instance, in the reduction of
the well-typed program (id [Int → Int]) (id [Int]), where id is the polymorphic identity function,
the equality α := Int → Int, β := Int;∆ ⊢ α = β → β should be derivable.

Rules in Figure 1 appeal to auxiliary well-formedness judgments, omitted for brevity. A typeT is
well-formed (Σ;∆ ⊢ T ) if it only contains type variables in the type variable environment ∆, and
type names bound in a well-formed type name store. A type name store is well-formed (⊢ Σ) if all
type names are distinct, and associated to well-formed types. A type environment Γ binds term
variables to types, and is well-formed (Σ;∆ ⊢ Γ) if all types are well-formed.

The decision of using type names instead of the traditional substitution semantics is in anticipa-
tion of gradualization: indeed, prior work has shown that runtime type generation is crucial in order
to be able to distinguish between different type variables instantiated with the same type [Ahmed
et al. 2011, 2017; Matthews and Ahmed 2008]. We follow the approach already in SF because we
want the dynamics and type soundness argument of the static language to help us with GSF.

Unsurprisingly, SF is type safe, and all well-typed terms are parametric. These results also follow
from the properties of GSF, and the strong relation between both languages.

5 GSF: STATICS

The first step of the Abstracting Gradual Typing methodology (AGT) is to define the syntax of
gradual types and give themmeaning through a concretization function to the set of static types they
denote. Then, by finding the corresponding abstraction function to establish a Galois connection,
the static semantics of the static language can be lifted to the gradual setting.

5.1 Syntax and Syntactic Meaning of Gradual Types

We introduce the syntactic category of gradual typesG ∈ GType, by admitting the unknown type
in any position, namely:

G ::= B | G → G | ∀X .G | G ×G | X | α | ?

Observe that static types T are syntactically included in gradual types G.
The syntactic meaning of gradual types is straightforward: the unknown type represents any

type, and a precise type (constructor) represents the equivalent static type (constructor). In other
words, Int → ? denotes the set of all function types from Int to any static type. Perhaps surprisingly,
we can simply extend this syntactic approach to deal with universal types, type variables, and
type names; the concretization function C is defined in Figure 2. Note that the definition is purely
syntactic and does not even consider well-formedness (? stands for any static type); notions built
above concretization, such as consistency, will naturally embed the necessary restrictions (ğ5.2).
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Following the abstract interpretation framework, the notion of precision is not subject to tailoring:
precision coincides with set inclusion of the denoted static types [Garcia et al. 2016].

Definition 5.1 (Type Precision). G1 ⊑ G2 if and only if C (G1) ⊆ C (G2).

Proposition 5.2 (Precision, inductively). The inductive definition of type precision given in
Figure 3 is equivalent to Definition 5.1.

Observe that both ∀X .X → ? and ∀X .? → X are more precise than ∀X .? → ?, and less precise
than ∀X .X → X , thereby reflecting the original intuition about precision [Siek et al. 2015a]. Also
∀X .? → ? and ? → ? are unrelated by precision, since they correspond to different constructors
(and GSF is a language with explicit polymorphism); they are both more precise than ?, of course.

Dual to concretization is abstraction, which produces a gradual type from a non-empty set of
static types. The abstraction function A is direct (Figure 2): it preserves type constructors and falls
back on the unknown type whenever an heterogeneous set is abstracted. A is both sound and
optimal: it produces the most precise gradual type that over-approximates a given set of static types.

Proposition 5.3 (Galois connection). ⟨C,A⟩ is a Galois connection, i.e.:
a) (Soundness) for any non-empty set of static types S = {T }, we have S ⊆ C (A(S))

b) (Optimality) for any gradual type G, we have A(C (G)) ⊑ G.

5.2 Lifting the Static Semantics

The key point of AGT is that once the meaning of gradual types is agreed upon, there is no space
for ad hoc design in the static semantics of the language. The abstract interpretation framework
provides us with the definitions of type predicates and functions over gradual types, for which we
can then find equivalent inductive or algorithmic characterizations.

In particular, a predicate on static types induces a counterpart on gradual types through existential
lifting. Our only predicate in SF is type equality, whose existential lifting is type consistency:

Definition 5.4 (Consistency). Ξ;∆ ⊢ G1 ∼ G2 if and only if Σ;∆ ⊢ T1 = T2 for some Σ ∈ C (Ξ),
Ti ∈ C (Gi ).

For closed types we write G1 ∼ G2. This definition uses a gradual type name store Ξ, which
binds type names to gradual types. Its concretization is the pointwise concretization:

C (·) = ∅ C (Ξ,α := G) = { Σ,α := T | Σ ∈ C (Ξ),T ∈ C (G) }

Note that because consistency is the consistent lifting of static type equality, which does impose
well-formedness, consistency is only defined on well-formed types (i.e. ·; · ⊢ X ∼ X does not hold).

Proposition 5.5 (Consistency, inductively). The inductive definition of type consistency given
in Figure 3 is equivalent to Definition 5.4.

Again, observe that the resulting definition of consistency relates any two types that only differ
in unknown type components, without any restriction. Also, because of explicit polymorphism,
top-level constructors must match, so ? → ? is not consistent with ∀X .? → ?. However, in line
with gradual typing, both are consistent with ?, as expected. Therefore GSF does not treat ? → ? as
a special łquasi-polymorphicž type, unlike System FG [Igarashi et al. 2017a]. Rather, consistency in
GSF coincides with that of CSA [Xie et al. 2018].

Lifting type functions such as dom requires abstraction: a lifted function is the abstraction of the
results of applying the static function to all the denoted static types [Garcia et al. 2016]:
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x ∈ Var,X ∈ TypeVar,α ∈ TypeName Ξ ∈ TypeName
fin
⇀ GType,∆ ⊂ TypeVar, Γ ∈ Var

fin
⇀ GType

G ::= B | G → G | ∀X .G | G ×G | X | α | ? (gradual types)
t ::= b | λx : G .t | ΛX .t | ⟨t , t⟩ | x | t :: G | op(t) | t t | t [G] | πi (t) (gradual terms)

Ξ;∆; Γ ⊢ t : G Well-typed terms

(Gb)
ty(b) = B Ξ;∆ ⊢ Γ

Ξ;∆; Γ ⊢ b : B
(Gλ)

Ξ;∆; Γ,x : G ⊢ t : G ′

Ξ;∆; Γ ⊢ λx : G .t : G → G ′

(GΛ)
Ξ;∆,X ; Γ ⊢ t : G Ξ;∆ ⊢ Γ

Ξ;∆; Γ ⊢ ΛX .t : ∀X .G
(Gpair)

Ξ;∆; Γ ⊢ t1 : G1 Ξ;∆; Γ ⊢ t2 : G2

Ξ;∆; Γ ⊢ ⟨t1, t2⟩ : G1 ×G2

(Gx)
x : G ∈ Γ Ξ;∆ ⊢ Γ

Ξ;∆; Γ ⊢ x : G
(Gasc)

Ξ;∆; Γ ⊢ t : G Ξ;∆ ⊢ G ∼ G ′

Ξ;∆; Γ ⊢ t :: G ′ : G ′

(Gop)

Ξ;∆; Γ ⊢ t : G1 ty(op) = G2 → G

Ξ;∆ ⊢ G1 ∼ G2

Ξ;∆; Γ ⊢ op(t) : G
(Gapp)

Ξ;∆; Γ ⊢ t1 : G1 Ξ;∆; Γ ⊢ t2 : G2

Ξ;∆ ⊢ dom♯(G1) ∼ G2

Ξ;∆; Γ ⊢ t1 t2 : cod
♯(G1)

(GappG)
Ξ;∆; Γ ⊢ t : G Ξ;∆ ⊢ G ′

Ξ;∆; Γ ⊢ t [G ′] : inst♯(G,G ′)
(Gpairi )

Ξ;∆; Γ ⊢ t : G

Ξ;∆; Γ ⊢ πi (t) : proj
♯
i (G)

dom♯ : GType⇀ GType

dom♯(G1 → G2) = G1

dom♯(?) = ?

dom♯(G) undefined o/w

cod♯ : GType⇀ GType

cod♯(G1 → G2) = G2

cod♯(?) = ?

cod♯(G) undefined o/w

inst♯ : GType2 ⇀ GType

inst♯(∀X .G,G ′) = G[G ′/X ]

inst♯(?,G ′) = ?

inst♯(G,G ′) undefined o/w

proj♯i : GType⇀ GType

proj♯i (G1 ×G2) = Gi

proj♯i (?) = ?

proj♯i (G) undefined o/w

Ξ;∆ ⊢ G ∼ G Type consistency

⊢ Ξ

Ξ;∆ ⊢ B ∼ B

⊢ Ξ X ∈ ∆

Ξ;∆ ⊢ X ∼ X

Ξ;∆ ⊢ G1 ∼ G ′
1 Ξ;∆ ⊢ G2 ∼ G ′

2

Ξ;∆ ⊢ G1 → G2 ∼ G ′
1 → G ′

2

Ξ;∆,X ⊢ G1 ∼ G2

Ξ;∆ ⊢ ∀X .G1 ∼ ∀X .G2

Ξ;∆ ⊢ G1 ∼ G ′
1 Ξ;∆ ⊢ G2 ∼ G ′

2

Ξ;∆ ⊢ G1 ×G2 ∼ G ′
1 ×G ′

2

⊢ Ξ α ∈ dom(Ξ)

Ξ;∆ ⊢ α ∼ α

Ξ;∆ ⊢ Ξ(α) ∼ G

Ξ;∆ ⊢ α ∼ G

Ξ;∆ ⊢ G ∼ Ξ(α)

Ξ;∆ ⊢ G ∼ α

Ξ;∆ ⊢ G

Ξ;∆ ⊢ G ∼ ?

Ξ;∆ ⊢ G

Ξ;∆ ⊢ ? ∼ G

G ⊑ G Type precision

B ⊑ B X ⊑ X

G1 ⊑ G ′
1 G2 ⊑ G ′

2

G1 → G2 ⊑ G ′
1 → G ′

2

G1 ⊑ G2

∀X .G1 ⊑ ∀X .G2

G1 ⊑ G ′
1 G2 ⊑ G ′

2

G1 ×G2 ⊑ G ′
1 ×G ′

2
α ⊑ α G ⊑ ?

Fig. 3. GSF: Syntax and Static Semantics
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Definition 5.6 (Consistent lifting of functions). Let Fn be a function of type Typen → Type. Its

consistent lifting F
♯
n , of type GType

n → GType, is defined as: F ♯
n (G) = A({ Fn(T ) | T ∈ C (G) })

The abstract interpretation framework allows us to prove the following definitions:

Proposition 5.7 (Consistent type functions). The definitions of dom♯ , cod♯ , inst♯ , and proj♯i
given in Fig. 3 are consistent liftings, as per Def. 5.6, of the corresponding functions from Fig. 1.

The gradual typing rules of GSF (Figure 3) are obtained by replacing type predicates and functions
with their corresponding liftings. Note that in (Gapp), the premise Ξ;∆ ⊢ dom♯(G1) ∼ G2 is a
compositional lifting of the corresponding premise in (Tapp), as justified by Garcia et al. [2016].

Of particular interest here is the fact that a term of unknown type can be optimistically treated
as a polymorphic term and hence instantiated, yielding ? as the result type of the type application
(inst♯(?,G ′) = ?). In contrast, a term of function type, even imprecise, cannot be instantiated because
the known top-level constructor does not match (e.g. inst♯(? → ?,G ′) is undefined).

5.3 Static Properties of GSF

As established by Siek and Taha [2006] in the context of simple types, we can prove that the GSF
type system is equivalent to the SF type system on fully-static terms. We say that a gradual type
is static if the unknown type does not occur in it, and a term is static if it is fully annotated with
static types. Let ⊢S denote the typing judgment of SF.5

Proposition 5.8 (Static eqivalence for static terms). Let t be a static term and G a static
type (G = T ). We have ⊢S t : T if and only if ⊢ t : T

The second important property of the static semantics of a gradual language is the static gradual
guarantee, which states that typeability is monotonic with respect to precision [Siek et al. 2015a].
Type precision (Def. 5.1) extends to term precision. A term t is more precise than a term t ′ if

they both have the same structure and t is more precisely annotated than t ′. The static gradual
guarantee ensures that removing type annotations does not introduce type errors (or dually, that
gradual type errors cannot be fixed by making types more precise).

Proposition 5.9 (Static gradual guarantee). Let t and t ′ be closed GSF terms such that t ⊑ t ′

and ⊢ t : G. Then ⊢ t ′ : G ′ and G ⊑ G ′.

6 GSF: EVIDENCE-BASED DYNAMICS

We now turn to the dynamic semantics of GSF. As anticipated, this is where the complexity of
gradual parametricity manifests. Still, in addition to streamlining the design of the static semantics,
AGT provides effective (though incomplete) guidance for the dynamics. In this section, we first
briefly recall the main ingredients of the AGT approach to dynamic semantics, namely evidence for
consistent judgments and consistent transitivity. We then describe the reduction rules of GSF by
treating evidence as an abstract datatype. This allows us to clarify a number of key operational
aspects before turning in ğ7 to the details of the representation and operations of evidence that
enable GSF to satisfy parametricity while adequately tracking type instantiations.

6.1 Background: Evidence-Based Semantics for Gradual Languages

For obtaining the dynamic semantics of a gradual language, AGT augments a consistent judgment
(such as consistency or consistent subtyping) with the evidence of why such a judgment holds.
Then, reduction mimics proof reduction of the type preservation argument of the static language,

5As usual, the propositions here are stated over closed terms, but are proven as corollaries of statements over open terms.
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combining evidences through steps of consistent transitivity, which either yield more precise
evidence, or fail if the evidences to combine are incompatible. A failure of consistent transitivity
corresponds to a cast error in a traditional cast calculus [Garcia et al. 2016].

Consider the gradual typing derivation of (λx : ?.x +1) false. In the inner typing derivation of the
function, the consistent judgment ? ∼ Int supports the addition expression, and at the top-level, the
judgment Bool ∼ ? supports the application of the function to false. When two types are involved
in a consistent judgment, we learn something about each of these types, namely the justification of
why the judgment holds. This justification can be captured by a pair of gradual types, ε = ⟨G1,G2⟩,
which are at least as precise as the types involved in the judgment [Garcia et al. 2016].6 Formally:

ε ⊩ G1 ∼ G2 ⇐⇒ ε ⊑ A2({⟨T1,T2⟩ | T1 ∈ C (G1),T2 ∈ C (G2),T1 = T2})

i.e. if evidence ⟨G ′
1,G

′
2⟩ justifies the consistency judgmentG1 ∼ G2, thenG ′

1 ⊑ G1 andG ′
2 ⊑ G2. For

instance, by knowing that ? ∼ Int holds, we learn that the first type can only possibly be Int, while
we do not learn anything new about the right-hand side, which is already fully static. Therefore
the evidence of that judgment is ε1 = ⟨Int, Int⟩. Similarly, the evidence for the second judgment is
ε2 = ⟨Bool,Bool⟩. Types in evidence can be gradual, e.g. ⟨? → ?, ? → ?⟩ justifies that (? → ?) ∼ ?.
Note that with the lifting of simple static type equality, both components of the evidence always
coincide, so evidence can be represented as a single gradual type. However, type equality in SF is
more subtle (ğ4), so the general presentation of evidence as pairs is required.
At runtime, reduction rules need to combine evidences in order to either justify or refute a use

of transitivity in the type preservation argument. In our example, we need to combine ε1 and ε2
in order to (try to) obtain a justification for the transitive judgment, namely that Bool ∼ Int. The
combination operation, called consistent transitivity ◦, determines whether two evidences support
the transitivity: here, ε2 ◦ ε1 = ⟨Bool,Bool⟩ ◦ ⟨Int, Int⟩ is undefined, so a runtime error is raised.
The evidence approach is very general and scales to disciplines where consistent judgments

are not symmetric, involve more complex reasoning, and even other evidence combination opera-
tions [Garcia et al. 2016; Lehmann and Tanter 2017]. All the definitions involved are justified by
the abstract interpretation framework. Also, both type safety and the dynamic gradual guarantee
become straightforward to prove. In particular, the dynamic gradual guarantee follows directly
from the monotonicity (in precision) of consistent transitivity. In fact, the generality of the approach
even admits evidence to range over other abstract domains; for instance, for gradual security typing
with references, evidence is defined with label intervals, not gradual labels [Toro et al. 2018a].

6.2 Reduction for GSF

In order to denote reduction of (evidence-augmented) gradual typing derivations, Garcia et al.
[2016] use intrinsic terms as a notational device; while appropriate, the resulting description is fairly
hard to comprehend and unusual, and it does implicitly involve a (presentational) transformation
from source terms to their intrinsic representation.

In this work, we simplify the exposition by avoiding the use of intrinsic terms; instead, we rely on
a type-directed, straightforward translation that inserts explicit ascriptions everywhere consistency
is usedÐvery much in the spirit of the coercion-based semantics of subtyping [Pierce 2002]. For
instance, the small program of ğ6.1 above, (λx : ?.x + 1) false, is translated to:

(ε?→Int(λx : ?.(ε1x :: Int) + (εInt1 :: Int)) :: ? → Int) (ε2(εBoolfalse :: Bool) :: ?)

where εG is the evidence of the reflexive judgmentG ∼ G (e.g. εInt supports Int ∼ Int). Evidences ε1
and ε2 are the ones from ğ6.1.7

6We use blue color for evidence ε to enhance readability of the structure of terms in the next section and beyond.
7Such initial evidences are computed by means of an interior function, given by the abstract interpretation framework [Garcia
et al. 2016]. The definition of interior and the type-preserving translation are direct.
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t ::= v | ⟨t , t⟩ | x | εt :: G | op(t) | t t | t [G] | πi (t) (terms)
v ::= εu :: G (values)
u ::= b | λx : G .t | ΛX .t | ⟨u,u⟩ (raw values)

Ξ;∆; Γ ⊢ s : G Well-typed terms (for conciseness, s ranges over both t and u)

(Eb)
ty(b) = B Ξ;∆ ⊢ Γ

Ξ;∆; Γ ⊢ b : B
(Eλ)

Ξ;∆; Γ,x : G ⊢ t : G ′

Ξ;∆; Γ ⊢ λx : G .t : G → G ′

(EΛ)
Ξ;∆,X ⊢ t : G Ξ;∆ ⊢ Γ

Ξ;∆; Γ ⊢ ΛX .t : ∀X .G
(Epair)

Ξ;∆; Γ ⊢ s1 : G1 Ξ;∆; Γ ⊢ s2 : G2

Ξ;∆; Γ ⊢ ⟨s1, s2⟩ : G1 ×G2

(Ex)
x : G ∈ Γ Ξ;∆ ⊢ Γ

Ξ;∆; Γ ⊢ x : G
(Easc)

Ξ;∆; Γ ⊢ s : G ε ⊩ Ξ;∆ ⊢ G ∼ G ′

Ξ;∆; Γ ⊢ εs :: G ′ : G ′

(Eop)
Ξ;∆; Γ ⊢ t : B ty(op) = B → B′

Ξ;∆; Γ ⊢ op(t) : B′
(Eapp)

Ξ;∆; Γ ⊢ t1 : G → G ′
Ξ;∆; Γ ⊢ t2 : G

Ξ;∆; Γ ⊢ t1 t2 : G
′

(EappG )
Ξ;∆; Γ ⊢ t : ∀X .G Ξ;∆ ⊢ G ′

Ξ;∆; Γ ⊢ t [G ′] : G[G ′/X ]
(Epairi)

Ξ;∆; Γ ⊢ t : G1 ×G2

Ξ;∆; Γ ⊢ πi (t) : Gi

Ξ ▷ t −→ Ξ ▷ t or error Notion of reduction

(Rasc) Ξ ▷ ε2(ε1u :: G1) :: G2 −→

{

Ξ ▷ (ε1 ◦ ε2)u :: G2

error if not defined

(Rop) Ξ ▷ op(εu :: G) −→ Ξ ▷ εB δ (op,u) :: B where B ≜ cod(ty(op))

(Rapp) Ξ ▷ (ε1(λx : G11.t) :: G1 → G2) (ε2u :: G1) −→

{

Ξ ▷ cod(ε1)(t[(ε2 ◦ dom(ε1))u :: G11)/x]) :: G2

error if not defined

(Rpair) Ξ ▷ ⟨ε1u1 :: G1, ε2u2 :: G2⟩ −→ Ξ ▷ (ε1 × ε2)⟨u1,u2⟩ :: G1 ×G2

(Rproji) Ξ ▷ πi (ε ⟨u1,u2⟩ :: G1 ×G2) −→ Ξ ▷ pi (ε)ui :: Gi

(RappG) Ξ ▷ (εΛX .t :: ∀X .G) [G ′] −→ Ξ
′
▷ εout (ε[α̂]t[α̂/X ] :: G[α/X ]) :: G[G ′/X ]

where Ξ ′ ≜ Ξ,α := G ′ for some α < dom(Ξ)

and α̂ = liftΞ′(α)

Ξ ▷ t 7−→ Ξ ▷ t or error Evaluation frames and reduction

f ::= ε□ :: G | op(v,□, t) | □ t | v □ | □ [G] | ⟨□, t⟩ | ⟨v,□⟩

(R −→)
Ξ ▷ t −→ Ξ

′
▷ t ′

Ξ ▷ t 7−→ Ξ
′
▷ t ′

(Rf )
Ξ ▷ t 7−→ Ξ

′
▷ t ′

Ξ ▷ f [t] 7−→ Ξ
′
▷ f [t ′]

(Rerr)
Ξ ▷ t −→ error

Ξ ▷ t 7−→ error
(Rf err)

Ξ ▷ t 7−→ error

Ξ ▷ f [t] 7−→ error

Fig. 4. GSFε : Syntax, Static and Dynamic Semantics

Despite this translation, we do preserve the essence of the AGT dynamics approach in which
evidence and consistent transitivity drive the runtime monitoring aspect of gradual typing. Further-
more, by making the translation explicitly ascribe all base values to their base type, we can present
a uniform syntax and greatly simplify reduction rules compared to the original AGT exposition.
This presentation also streamlines the proofs by reducing the number of cases to consider.
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Figure 4 presents the syntax and semantics of GSFε , a simple variant of GSF in which all values
are ascribed, and ascriptions carry evidence. Key changes with respect to Figure 3 are highlighted
in gray. Here, we treat evidence as a pair of elements of an abstract datatype; we define its actual
representation (and operations) in the next section.

Because the translation from GSF to GSFε introduces explicit ascriptions everywhere consistency
is used, the only remaining use of consistency in the typing rules of GSFε is in the rule (Easc). The
evidence of the term itself supports the consistency judgment in the premise. All other rules require
types to match exactly; the translation inserts ascriptions to ensure that top-level constructors
match in every elimination form.

The notion of reduction for GSFε terms deals with evidence propagation and composition with
consistent transitivity. Rule (Rasc) specifies how an ascription around an ascribed value reduces
to a single value if consistent transitivity holds: ε1 justifies that Gu ∼ G1, where Gu is the type of
the underlying simple value u, and ε2 is evidence that G1 ∼ G2. The composition via consistent
transitivity, if defined, justifies that Gu ∼ G2; if undefined, reduction steps to error. Rule (Rop)
simply strips the underlying simple values, applies the primitive operation, and then wraps the
result in an ascription, using a canonical base evidence εB (which trivially justifies that B ∼ B).
Rule (Rapp) combines the evidence from the argument value ε2 with the domain evidence of the
function value dom(ε1) in an attempt to transitively justify that Gu ∼ G11. Failure to justify that
judgment, as in our example in ğ6.1, produces error. The return value is ascribed to the expected
return type, using the codomain evidence of the function cod(ε1). Rule (Rpair) produces a pair value
when the subterms of a pair have been reduced to values themselves, using the product operator on
evidences ε1 × ε2. This rule is necessary to enforce a uniform presentation of all values as ascribed
values, which simplifies technicalities. Dually, Rule (Rproji) extracts a component of a pair and
ascribes it to the projected type, using the corresponding evidence obtained with pi (ε).8

Apart from the presentational details, the above rules are standard for an evidence-based reduction
semantics. Rule (RappG) is the rule that specifically deals with parametric polymorphism, reducing
a type application. This is where most of the complexity of gradual parametricity concentrates.
Observe that there are two ascriptions in the produced term:

• The inner ascription (toG[α/X ]) is for the body of the polymorphic term, asserting that substituting
a fresh type name α for the type variable X preserves typing. The associated evidence ε[α̂] is the
result of instantiating ε (which justifies that the actual type of ΛX .t is consistent with ∀X .G) with
the fresh type name, hence justifying that the body after substitution is consistent with G[α/X ].

• The outer ascription asserts that G[α/X ] is consistent with G[G ′/X ], witnessed by evidence εout .
This evidence plays a key role in avoiding unjustified failures as described in ğ2.4. We define εout in
ğ7.2 below, once the representation of evidence is introduced.

The use of α̂ is a technicality: because so far we treat evidence as an abstract datatype from
an as-yet-unspecified domain, say pairs of EType, we cannot directly use gradual types (GType)
inside evidences. The connection between GType and EType is specified by lifting operations,
lift

Ξ
: GType → EType and unlift : EType → GType.9 Because type names have meaning related

to a store, the lifting is parameterized by the store Ξ. Term substitution is mostly standard: it uses
unlift to recover α , and is extended to substitute recursively in evidences. Substitution in evidence,
also triggered by evidence instantiation, is simply component-wise substitution on evidence types.

Finally, the evaluation frames and associated reduction rules in Figure 4 are straightforward; in
particular (Rerr) and (Rf err) propagate error to the top-level.

8We use pi (ε) to avoid confusion with πi (ε), which refers to the first projection of evidence (itself a metalanguage pair).
9In standard AGT [Garcia et al. 2016] the lifting is simply the identity, i.e. EType = GType.
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7 EVIDENCE FOR GRADUAL PARAMETRICITY

We now turn to the actual representation of evidence. We first explain in ğ7.1 why the standard
representation of evidence as pair of gradual types is insufficient for gradual parametricity. We
then introduce the refined representation of evidence to enforce parametricity (ğ7.2), and basic
properties of the language. Richer properties of GSF are discussed in ğ8, ğ9 and ğ10.

7.1 Simple Evidence, and Why It Fails

In standard AGT [Garcia et al. 2016], evidence is simply represented as a pair of gradual types,
i.e. EType = GType. Consistent transitivity is defined through the abstract interpretation framework.
The definition for simple types is as follows (ε ⊩ J means ε supports the consistent judgment J ):

Definition 7.1 (Consistent transitivity). Suppose εab ⊩ Ga ∼ Gb and εbc ⊩ Gb ∼ Gc . Evidence for
consistent transitivity is deduced as (εab ◦ εbc ) ⊩ Ga ∼ Gb , where:

⟨G1,G21⟩ ◦ ⟨G22,G3⟩ = A2({⟨T1,T3⟩ ∈ C (G1) ×C (G3) | ∃T2 ∈ C (G21) ∩C (G22),T1 = T2 ∧T2 = T3})

In words, if defined, the evidence that supports the transitive judgment is obtained by abstracting
over the pairs of static types denoted by the outer evidence types (G1 and G3) such that they are
connected through a static type common to bothmiddle evidence types (G21 andG22). This definition
can be proven to be equivalent to an inductive definition that proceeds in a syntax-directed manner
on the structure of types [Garcia et al. 2016].
Consistent transitivity satisfies some important properties. First, it is associative. Second, the

resulting evidence is more precise than the outer evidence types, reflecting that during evaluation,
typing justification only gets more precise (or fails). Violating this property breaks type safety. The
third property is key for establishing the dynamic gradual guarantee [Garcia et al. 2016].

Lemma 7.2. (Properties of consistent transitivity).
(a) Associativity. (ε1 ◦ ε2) ◦ ε3 = ε1 ◦ (ε2 ◦ ε3), or both are undefined.
(b) Optimality. If ε = ε1 ◦ ε2 is defined, then π1(ε) ⊑ π1(ε1) and π2(ε) ⊑ π2(ε2).
(c) Monotonicity. If ε1 ⊑ ε1

′ and ε2 ⊑ ε2
′ and ε1 ◦ ε2 is defined, then ε1 ◦ ε2 ⊑ ε1

′ ◦ ε2
′.

Unfortunately, adopting gradual types for evidence types and simply extending the consistent
transitivity definition to deal with GSF types and consistency judgments yields a gradual language
that breaks parametricity.10 To illustrate, consider this simple program:

1 (ΛX.(λx:X.let y:? = x in let z:? = y in z + 1)) [Int] 1

The function is not parametric because it ends up adding 1 to its argument, although it does so after
two intermediate bindings, typed as ?. Without further precaution, the parametricity violation of
this programwould not be detected at runtime. Assume that the type application generates the fresh
name α , bound to Int in the store. For justifying that x can flow to y (the let-binding is equivalent
to a function application), we need evidence for Int ∼ ? by consistent transitivity between the
evidences ⟨Int,α⟩, which justifies Int ∼ α ,11 and ⟨α ,α⟩, which justifies α ∼ ?.12 Using the definition
of consistent transitivity (Def. 7.1), ⟨Int,α⟩ ◦ ⟨α ,α⟩ = ⟨Int,α⟩. Similarly, for justifying the flow
of y to z, the previous evidence must be combined with ⟨?, ?⟩, which justifies ? ∼ ?. By Def. 7.1,
⟨Int,α⟩ ◦ ⟨?, ?⟩ = A2({ ⟨Int, Int⟩ , ⟨Int,α⟩ }) = ⟨Int, ?⟩. This evidence can subsequently be used to
produce evidence to justify that the addition is well-typed, since ⟨Int, ?⟩ ◦ ⟨Int, Int⟩ = ⟨Int, Int⟩.
Therefore the program produces 2, without errors: parametricity is violated.
10The obtained language is type safe, and satisfies the dynamic gradual guarantee. This novel design could make sense to
gradualize impure polymorphic languages, which do not enforce parametricity. Exploring this perspective is future work.
11Note that conversely to the simply-typed setting, both components of evidence are not necessarily equal, as in this case.
12This evidence is obtained by substituting α for X in the initial evidence ⟨X , X ⟩ for X ∼ ?.
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(unsl) (idL) (sealL)

⟨E1,E2⟩ ◦ ⟨E3,E4⟩ = ⟨E ′1,E
′
2⟩

⟨E1,α
E2 ⟩ ◦ ⟨αE3 ,E4⟩ = ⟨E ′1,E

′
2⟩

⟨E,E⟩ ◦ ⟨?, ?⟩ = ⟨E,E⟩

⟨E1,E2⟩ ◦ ⟨E3,E4⟩ = ⟨E ′1,E
′
2⟩

⟨E1,E2⟩ ◦ ⟨E3,α
E4 ⟩ = ⟨E ′1,α

E′
2 ⟩

(func)
⟨E41,E31⟩ ◦ ⟨E21,E11⟩ = ⟨E3,E1⟩ ⟨E12,E22⟩ ◦ ⟨E32,E42⟩ = ⟨E2,E4⟩

⟨E11→E12,E21→E22⟩ ◦ ⟨E31→E32,E41→E42⟩ = ⟨E1→E2,E3→E4⟩

(func?L)
⟨E1→E2,E3→E4⟩ ◦ ⟨?→?, ?→?⟩ = ⟨E ′1→E ′2,E

′
3→E ′4⟩

⟨E1→E2,E3→E4⟩ ◦ ⟨?, ?⟩ = ⟨E ′1→E ′2,E
′
3→E ′4⟩

Fig. 5. Consistent Transitivity (selected rules)

7.2 Refining Evidence

For gradual parametricity, evidence must do more than just ensure type safety. It needs to safeguard
the sealing that type variables are meant to represent, also taking care of unsealing as necessary.
First of all, we need to define evidence to adequately represent consistency judgments of GSF.

Evidence Types. We define evidence types, E ∈ EType, to be an enriched version of gradual types:

E ::= B | E → E | ∀X .E | E × E | αE | X | ?

SF equality judgments, and hence GSF consistency judgments, are relative to a store. It is therefore
not enough to use type names in evidence: we need to keep track of their associated types in the
store. An evidence type name αE therefore captures the type associated to the type name α through
the store. For instance, evidence that a variable has a polymorphic type X is initially ⟨X ,X ⟩. When
X is instantiated, say to Int, and a fresh type name α is introduced, the evidence becomes ⟨α Int

,α Int⟩.
An evidence type name does not only record the end type to which it is bound, but the whole path.

For instance, α β Int
is a valid evidence type name that embeds the fact that α is bound to β , which is

itself bound to Int.
Note that as a program reduces, evidence can not only become more precise than statically-used

types, but also than the global store. For instance, it can be the case that α := ? in the global store
Ξ, but that locally, the evidence for α has gotten more precise, such as α Int. Formally, a type name
is enriched with its transitive bindings in the store, lift

Ξ
(α) = α lift

Ξ
(Ξ(α )). Unlifting simply forgets

the additional information: unlift
Ξ
(αE ) = α . In all other cases, both operations recur structurally.

It is crucial to understand the intuition behind the position of type names in a given evidence.
The position of αE in an evidence can correspond to a sealing, an unsealing, or neither. If αE is only
on the right side, e.g. ⟨Int,α Int⟩, then the evidence is a sealing (here, of Int with α ). Dually, if αE is
only on the left side, e.g. ⟨α Int

, Int⟩, the evidence is an unsealing (here, of Int from α ). Sealing and
unsealing evidences arise through reduction, as will be illustrated later in this section.

Consistent Transitivity. With this syntactic enrichment, consistent transitivity can be strength-
ened to account for sealing and unsealing, ensuring parametricity. Consistent transitivity is defined
inductively; selected rules are presented in Figure 5.
Rule (unsl) specifies that when a sealing and an unsealing of the same type name meet in the

middle positions of a consistent transitivity step, the type name can be eliminated in order to
calculate the resulting evidence. For instance, ⟨Int,α Int⟩ ◦ ⟨α ?

, ?⟩ = ⟨Int, Int⟩ ◦ ⟨?, ?⟩ = ⟨Int, Int⟩.
As shown in ğ7.1, it is important for consistent transitivity to not lose precision when combining

an evidence with an unknown evidence. To this end, rule (identL) in Fig. 5 preserves the left
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evidence. Going back to the example of ğ7.1, we now have ⟨Int,α Int⟩ ◦ ⟨?, ?⟩ = ⟨Int,α Int⟩, instead
of ⟨Int, ?⟩. Because ⟨Int,α Int⟩ ◦ ⟨Int, Int⟩ is undefined, reduction steps to error as desired.
Rule (sealL) shows that when an evidence is combined with a sealing, the resulting evidence is

also a sealing. This sealing can be more precise, e.g. ⟨Int, Int⟩ ◦ ⟨?,α ?⟩ = ⟨Int,α Int⟩.
Figure 5 only shows one structurally-recursive rule, corresponding to the function case (func);

consistent transitivity is computed recursively with the domain and codomain evidences. To
combine a function evidence with unknown evidence, the unknown evidence is first łexpandedž
to match the type constructor (func?L). There are similar rules for the other type constructors.
Also, there are symmetric variants of the above rulesÐsuch as (identR) and (sealR)Ðin which every
evidence and every evidence type is swapped.

Importantly, this refined definition of consistent transitivity preserves associativity and optimal-
ity, based on a natural notion of precision for evidence types. It does however break monotonicity,13

and hence the dynamic gradual guarantee. In ğ9, we give a semantic argument establishing that
the dynamic gradual guarantee is fundamentally incompatible with parametricity anyway, inde-
pendently of this refinement.

Outer Evidence. The reduction rule of a type application (RappG) produces an outer evidence
εout that justifies thatG[α/X ] is consistent withG[G ′/X ]. The precise definition of this evidence is
delicate, addressing a subtle tension between the precision required for justifying unsealing when
possible, and the imprecision required for parametricity.

εout ≜ ⟨E∗[α
E ],E∗[E

′]⟩ where E∗= liftΞ (unlift(π2(ε))),α
E
= lift

Ξ
′(α),E ′

= lift
Ξ
(G ′)

In this definition, ε , α , G ′, Ξ, and Ξ
′ come from rule (RappG). Determining E∗ is the key challenge.

The second evidence type of ε refines ∀X .G by exploiting the fact that the underlying polymorphic
value ΛX .t is consistent with it; this extra precision is crucial for unsealing. The roundtrip unlift/lift
łresetsž the sealing information of evidence type names to that contained in the store; this relaxation
is crucial for parametricity (to prove the compositionality lemmaÐğ8).
Note that εout will never cause a runtime error when combined with the resulting evidence of

the parametric term result, because both are necessarily related by precision.

Illustration. The following reduction trace illustrates all the important aspects of reduction:

(ε∀X .X→X (ΛX .λx : X .x) :: ∀X .X→?) [Int] (εInt1 :: Int) initial evidence

(RappG ) 7−→ (⟨α Int→α Int, Int→ Int⟩ (εα→α (λx : α .x) :: α→?) :: Int→?) (εInt1 :: Int) note the precision of εout
(Rasc) 7−→ (⟨α Int→α Int, Int→ Int⟩ (λx : α .x) :: Int→?) (εInt1 :: Int) consistent transitivity

(Rapp) 7−→ ⟨α Int, Int⟩ (⟨Int,α Int⟩ 1 :: α) :: ? argument is sealed

(Rasc) 7−→ ⟨Int, Int⟩ 1 :: ? unsealing eliminates α

Crucially, the initial evidence of the identity function is fully precise, even though it is ascribed an
imprecise type. Consequently, in the first reduction step above, εout is calculated as:

εout ≜ ⟨E∗[α
E ],E∗[E

′]⟩ = ⟨(∀X .X→X )[α Int], (∀X .X→X )[Int]⟩ = ⟨α Int→α Int, Int→ Int⟩

The application step (Rapp) then gives rise to sealing and unsealing evidences after deconstructing
εout : the inner evidence ⟨Int,α Int⟩ seals the number 1 at type α , while the outer evidence ⟨α Int

, Int⟩
allows the subsequent unsealing in the ascription step (Rasc). As a result, the ascribed identity
function yields usable values, because the outer evidence subsequently takes care of unsealing. This
addresses the excess of failure reported with λB and System FC in ğ2.4. Note that if the function
were not intrinsically precise on its return type, e.g. ΛX .λx : X .(x :: ?), then initial evidence would
likewise be imprecise, and deconstructing εout would not justify unsealing the result anymore.

13For instance, consider ⟨Int, α Int ⟩ ⊑ ⟨Int, α Int ⟩ and ⟨α Int, Int⟩ ⊑ ⟨?, ?⟩. By consistent transitivity, ⟨Int, α Int ⟩◦⟨α Int, Int⟩ =
⟨Int, Int⟩ (rule unsl), and ⟨Int, α Int ⟩ ◦ ⟨?, ?⟩ = ⟨Int, α Int ⟩ (rule idL), but ⟨Int, Int⟩ ̸⊑ ⟨Int, α Int ⟩.
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7.3 Basic Properties of GSF Evaluation

The runtime semantics of a GSF term are given by first translating the term to GSFε (noted
⊢ t { tε : G) and then reducing the GSFε term. We write t ⇓ Ξ ▷ v (resp. t ⇓ error) if ⊢ t { tε : G

and · ▷ tε 7−→
∗
Ξ ▷ v (resp. · ▷ tε 7−→∗

Ξ ▷ error) for some resulting store Ξ. We write Ξ ▷ v : G for
Ξ; ·; · ⊢ v : G. We write t ⇑ if the translation of t diverges, and t ⇓ v when the store is irrelevant.
The properties of GSF follow from the same properties of GSFε , expressed using the small-step

reduction relation, due to the fact that the translation{ preserves typing. In particular, GSF terms
do not get stuck, although they might produce error or diverge:

Proposition 7.3 (Type Safety). If ⊢ t : G then either t ⇓ Ξ ▷ v with Ξ ▷ v : G, t ⇓ error, or t ⇑.

Proposition 5.8 established that GSF typing coincides with SF typing on static terms. A similar
result holds considering the dynamic semantics. In particular, static GSF terms never produce error:

Proposition 7.4 (Static terms do not fail). Let t be a static term. If ⊢ t : T then ¬(t ⇓ error).

This result follows from the fact that all evidences in a static program are static, hence never
gain precision; the initial type checking ensures that combination through transitivity never fails.
As we will see in ğ10, a static term is also guaranteed to terminate.

8 GSF: PARAMETRICITY

We establish parametricity for GSF by proving parametricity for GSFε . Specifically, we define a
step-indexed logical relation for GSFε terms, closely following the relation for λB [Ahmed et al.
2017]. In the following, we only go briefly over the definition of the relation (Figure 6), and focus
on the few differences with the λB relation, essentially dealing with evidences.
The relation is defined on tuples (W , t1, t2) that denote two related terms t1, t2 in a worldW .

A world is composed of a step index j, two stores Ξ1 and Ξ2 used to typecheck and evaluate the
related terms, and a mapping κ, which maps type names to relations R, used to relate sealed values.
The components of a world are accessed through a dot notation, e.g.W .j for the step index.

The interpretations of values, terms, stores, name environments, and type environments are
mutually defined, using the auxiliary definitions at the bottom of Figure 6. As usual, the value and
term interpretations are indexed by a type and a type substitution ρ. We use Atomn[G1,G2] to
denote a set of pair of terms of type G1 and G2, and worlds with a step index less than n. We write
Atomval

n [G1,G2] to restrict that set to values, and Atomρ [G] to denote a set of terms of the same
type after substitution. The Atom=ρ [G] variant is similar to Atomval

n [G1,G2] but restricts the set to
values that have, after substitution, equally precise evidences (the equality is after unlifting because
two sealed values may be related under different instantiations). Reln[G1,G2] defines the set of
relations of values of type G1 and G2. We use ⌊R⌋n and ⌊κ⌋n to restrict the step index of the worlds
to less than n. Finally, κ ′ ⪰ κ specifies that κ ′ is a future relation mapping of κ (and extension), and
similarlyW ′ ⪰W expresses thatW ′ is a future world ofW . The ↓ operator lowers the step index
of a world by 1.
The logical interpretation of terms of a given type enforces a łtermination-sensitivež view of

parametricity: if the first term yields a value, the second must produce a related value at that type;
if the first term fails, so must the second. Note that Atom=ρ [G] requires the second component of
the evidence of each value to have the same precision in order to enforce such sensitivity. Indeed,
if one is allowed to be more precise than the other, then when later combined in the same context,
the more precise value may induce failure while the other does not.
Two base values are related if they are equal. Two functions are related if their application to

related values yields related results. Two type abstractions are related if given any two types and
any relation between them, the instantiated terms (without their unsealing evidence) are also
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Vρ JBK = {(W ,v,v) ∈ Atom=ρ [B]}
Vρ JG1 → G2K = {(W ,v1,v2) ∈ Atom=ρ [G1 → G2] | ∀W ′ ⪰W .∀v ′

1,v
′
2.

(W ′
,v ′

1,v
′
2) ∈ Vρ JG1K ⇒ (W ′

,v1 v
′
1,v2 v

′
2) ∈ Tρ JG2K}

Vρ JG1 ×G2K = {(W ,v1,v2) ∈ Atom=ρ [G1 ×G2] |

(W ,π1(v1),π1(v2)) ∈ Tρ JG1K ∧ (W ,π2(v1),π2(v2)) ∈ Tρ JG2K}
Vρ J∀X .GK = {(W ,v1,v2) ∈ Atom=ρ [∀X .G] | ∀W ′ ⪰W .∀t1, t2,G1,G2,α , ε1, ε2.

∀R ∈ RelW ′.j [G1,G2].

(W ′
.Ξ1 ⊢ G1 ∧W ′

.Ξ2 ⊢ G2∧

W ′
.Ξ1 ▷ v1[G1] 7−→W ′

.Ξ1,α := G1 ▷ ε1t1 :: ρ(G)[G1/X ] ∧

W ′
.Ξ2 ▷ v2[G2] 7−→W ′

.Ξ2,α := G2 ▷ ε2t2 :: ρ(G)[G2/X ]) ⇒

↓ (W ′ ⊠ (α ,G1,G2,R), t1, t2) ∈ Tρ[X 7→α ]JGK}

Vρ JX K = Vρ Jρ(X )K

Vρ JαK = {(W , ⟨E11,α
E12 ⟩u1 :: α , ⟨E21,α

E22 ⟩u2 :: α) ∈ Atom=∅ [α] |

(W , ⟨E11,E12⟩u1 ::W.Ξ1(α), ⟨E21,E22⟩u2 ::W.Ξ2(α)) ∈W.κ(α)}

Vρ J?K = {(W , ε1u1 :: ?, ε2u2 :: ?) ∈ Atom=∅ [?] | const(π2(εi )) = G ∧

(W , ε1u1 :: G, ε2u2 :: G) ∈ Vρ JGK}

Tρ JGK = {(W , t1, t2) ∈ Atomρ [G] | ∀i <W.j, (∀Ξ1,v1.W.Ξ1 ▷ t1 7−→
i
Ξ1 ▷ v1 ⇒

∃W ′ ⪰W ,v2.W.Ξ2 ▷ t2 7−→
∗ W ′

.Ξ2 ▷ v2 ∧W ′
.j + i =W.j ∧

W ′
.Ξ1 = Ξ1 ∧ (W ′

,v1,v2) ∈ Vρ JGK) ∧

(∀Ξ1.W.Ξ1 ▷ t1 7−→
i error ⇒ ∃Ξ2.W.Ξ2 ▷ t2 7−→

∗ error)}

SJ·K = World

SJΞ,α := GK = SJΞK ∩ {W ∈ World |W.Ξ1(α) = G ∧W.Ξ2(α) = G ∧

⊢W.Ξ1∧ ⊢W.Ξ2 ∧W.κ(α) = ⌊V∅JGK⌋W.j }

DJ·K = { (W , ∅) |W ∈ World }

DJ∆,X K = { (W , ρ[X 7→ α]) | (W , ρ) ∈ DJ∆K ∧ α ∈ dom(W .κ) }

Gρ J·K = { (W , ∅) |W ∈ World }

Gρ JΓ,x : GK = { (W ,γ [x 7→ (v1,v2)]) | (W ,γ ) ∈ Gρ JΓK ∧ (W ,v1,v2) ∈ Vρ JGK }

Ξ;∆; Γ ⊢ t1 ⪯ t2 : G ≜ Ξ;∆; Γ ⊢ t1 : G ∧ Ξ;∆; Γ ⊢ t2 : G ∧ ∀W ∈ SJΞK, ρ,γ .
((W , ρ) ∈ DJ∆K ∧ (W ,γ ) ∈ Gρ JΓK) ⇒ (W , ρ(γ1(t1)), ρ(γ2(t2))) ∈ Tρ JGK

Ξ;∆; Γ ⊢ t1 ≈ t2 : G ≜ Ξ;∆; Γ ⊢ t1 ⪯ t2 : G ∧ Ξ;∆; Γ ⊢ t2 ⪯ t1 : G

Atomn [G1,G2] ={(W , t1, t2) |W.j < n ∧W ∈ World ∧W.Ξ1, ·, · ⊢ t1 : G1 ∧W.Ξ2, ·, · ⊢ t2 : G2}

Atomval
n [G1,G2] ={(W ,v1,v2) ∈ Atomn [G1,G2]} Atomρ [G] = ∪n≥0{(W , t1, t2) ∈ Atomn [ρ(G), ρ(G)]}

Atom=ρ [G] ={(W ,v1,v2) ∈ Atomρ [G] | unlift(π2(ev(v1))) = unlift(π2(ev(v2)))}

World = ∪n≥0 Worldn

Worldn ={(j,Ξ1,Ξ2,κ) ∈ Nat × Store × Store × (TypeName → Relj ) |

j < n ∧ ⊢ Ξ1 ∧ ⊢ Ξ2 ∧ ∀α ∈ dom(κ).κ(α) ∈ Relj [Ξ1(α),Ξ2(α)]}

Reln [G1,G2] ={R ∈ Atomval
n [G1,G2] | ∀(W ,v1,v2) ∈ R.∀W ′ ⪰W .(W ′

,v1,v2) ∈ R}

⌊R⌋n = { (W , e1, e2) ∈ R |W.j ≤ n } ⌊κ⌋n = { α 7→ ⌊R⌋n | κ(α) = R }

κ ′ ⪰ κ ≜∀α ∈ dom(κ).κ ′(α) = κ(α)

W ′ ⪰W ≜W ′
.j ≤W.j ∧W ′

.Ξ1 ⊇W.Ξ1 ∧W ′
.Ξ2 ⊇W.Ξ2 ∧W ′

.κ ⪰ ⌊W.κ⌋W ′.j ∧W ′
,W ∈ World

↓W =(j,W.Ξ1,W.Ξ2, ⌊W.κ⌋j ) where j =W.j − 1

Fig. 6. Gradual logical relation and auxiliary definitions

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 17. Publication date: January 2019.



Gradual Parametricity, Revisited 17:23

related in a world extended (⊠) with α , the two instantiation types G1 and G2 and the chosen
relation R between sealed values. Note that the step index of this extended world is decreased by
one, because we take a reduction step. Two pairs are related if their components are pointwise
related. Two sealed values are related at a type name α if, after unsealing, the resulting values are
in the relation corresponding to α in the current world,W.κ(α).

Finally, two values are related at type ? if they are related at the least-precise type with the same
top-level constructor as the second component of the evidence, const(π2(εi )).14 The intuition is
that to be able to relate these unknown values we must take a step towards relating their actual
content; evidence necessarily captures at least the top-level constructor (e.g. if a value is a function,
the second evidence type is no less precise than ? → ?, i.e. const(E1 → E2)).
The logical relation is well-founded for two reasons: (i) in the ? case, const(π2(εi )) cannot itself

be ?, as just explained; (ii) in each other recursive cases, the step index is lowered: for functions and
pairs, the relation is between reducible expressions (applications, projections) that either take a
step or fail; for type abstractions, the relation is with respect to a world whose indexed is lowered.

The interpretations of stores, type name environments and type environments are straightforward
(Figure 6). The logical relation allows us to define logical approximation, whose symmetric extension
is logical equivalence. Any well-typed GSFε term is related to itself at its type:

Theorem 8.1 (Fundamental Property). If Ξ;∆; Γ ⊢ t : G then Ξ;∆; Γ ⊢ t ⪯ t : G.

As standard, the proof of the fundamental property uses compatibility lemmas for each term
constructor and the compositionality lemma. Almost every compatibility lemma relies on the fact
that the ascription of two related values yield related terms.

Lemma 8.2 (Ascriptions Preserve Relations). If (W ,v1,v2) ∈ VρJGK, ε ⊩ Ξ;∆ ⊢ G ∼ G ′,
W ∈ SJΞK, and (W , ρ) ∈ DJ∆K, then (W , ρ1(ε)v1 :: ρ(G

′), ρ2(ε)v2 :: ρ(G
′)) ∈ TρJG

′K.

Note that type substitution on evidences takes as parameter the corresponding store: ρi (ε) is
syntactic sugar for ρ(W.Ξi , ε), lifting each substituted type name in the process, e.g. if ρ(X ) = α ,
W.Ξ1(α) = Int, andW.Ξ2(α) = Bool, then ρ1(⟨X ,X ⟩) = ⟨α Int

,α Int⟩, and ρ2(⟨X ,X ⟩) = ⟨αBool
,αBool⟩.

9 PARAMETRICITY VS. DYNAMIC GRADUAL GUARANTEE

We now turn to the dynamic gradual guarantee [Siek et al. 2015a]. In a big-step setting, this
guarantee essentially says that if ⊢ t : G and t ⇓ v , then for any t ′ such that t ⊑ t ′, we have t ′ ⇓ v ′

for some v ′ such that v ⊑ v ′. We show that parametricity as defined in ğ8 is however incompatible
with this guarantee. First, we can prove the following lemma:

Lemma 9.1. For any ⊢ v : ? and ⊢ G, we have (ΛX .λx : ?.x :: X ) [G] v ⇓ error.

Proof. Let v ′
= (ΛX .λx : ?.x :: X ), ⊢ v ′

{ v∀ : ∀X .? → X , and v s.t. ⊢ v { v? : ?.
By the fundamental property (Th. 8.1), ⊢ v∀ ⪯ v∀ : ∀X .? → X so for anyW0 ∈ SJ·K, (W0,v∀,v∀) ∈

T∅J∀X .? → X K. Becausev∀ is a value, (W0,v∀,v∀) ∈ V∅J∀X .? → X K. By reduction, · ▷v∀ [Gi ] 7−→
∗

Ξ
′
i ▷ ε

′
ivi :: ? → Gi for some ε ′i , εi and εiα , where Ξ

′
i = {α = Gi } and vi = εi (λx : ?.(εiαx ::

α)) :: ? → α . We can instantiate the definition of V∅J∀X .? → X K with W0, G1 = G and G2

structurally different (and different from ?), some R ∈ RelW0 .j
[G1,G2], v1, v2, ε ′1 and ε ′2, then we

have that (W1,v1,v2) ∈ TX 7→α J? → X K, whereW1 = (↓ (W0 ⊠ (α ,G1,G2,R)). As v1 and v2 are
values, (W1,v1,v2) ∈ VX 7→α J? → X K. Also, by associativity of consistent transitivity, the reduction
of Ξ ′

i ▷ (ε
′
ivi :: ? → Gi ) v? is equivalent to that of Ξ ′

i ▷ cod(ε
′
i )(vi (dom(ε ′i )v? :: ?)) :: Gi .

By the fundamental property (Th. 8.1) we know that ⊢ v? ⪯ v? : ?; we can instantiate this
definitionwith someW2 ⪰W1, andwe have that (W2,v?,v?) ∈ T∅J?K. Sincev? is a value, (W2,v?,v?) ∈

14const extracts the top-level constructor of an evidence type, e.g. const(E1 → E2) = ? → ? and const(∀X .E) = ∀X .?.
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VX 7→α J?K. By the ascription lemma (8.2), (W2, dom(ε ′1)v? :: ?, dom(ε ′2)v? :: ?) ∈ TρJ?K. If dom(ε ′1)v? :: ?
reduces to error then the result follows immediately. Otherwise, Ξ ′

i ▷ dom(ε ′1)v? :: ? 7−→
∗
Ξ
′
i ▷ v

′′
i ,

and (W3,v
′′
1 ,v

′′
2 ) ∈ VρJ?K, whereW3 =↓W2, and some v ′′

1 and v ′′
2 . We can instantiate the definition

of VX 7→α J? → X K withW3, v ′′
1 and v ′′

2 , obtaining that (W3,v1 v
′′
1 ,v2 v

′′
2 ) ∈ TX 7→α JX K. We then

proceed by contradiction. Suppose that Ξ ′
i ▷ vi v

′′
i 7−→∗

Ξ
′′
i ▷ v

′
i (for a big-enough step index). If

v ′′
i = ε ′′ivu :: ?, then by evaluation v ′

i = ε ′ivu :: α , for some ε ′iv . But by definition of VX 7→α JX K,
it must be the case that for someW4 ⪰ W3, (W4, ε

′
1vu :: G1, ε

′
2vu :: G2) ∈ R, which is impossible

because u cannot be ascribed to structurally different types G1 and G2. Therefore v1 v ′′
1 cannot

reduce to a value, and hence the term v∀ [G] v? cannot reduce to a value either. Because v∀ is
non-diverging, its application must produce error. □

Consequently, the dynamic gradual guarantee is violated:

Corollary 9.2. There exist ⊢ t1 : G and t2 ⊒ t1 such that t1 ⇓ v and t2 ⇓ error.

Proof. Let idX ≜ ΛX .λx : X .x :: X , and id? ≜ ΛX .λx : ?.x :: X . By definition of precision, we
have idX ⊑ id?. Let ⊢ v : G and ⊢ v ′ : ?, such that v ⊑ v ′. Pose t1 ≜ idX [G] v and t2 ≜ id? [G] v ′.
By definition of precision, we have t1 ⊑ t2. By evaluation, t1 ⇓ v . But by Lemma 9.1, t2 ⇓ error. □

Interestingly, Lemma 9.1 holds irrespective of the actual choices for representing evidence in
GSFε . The key element is the (standard) logical interpretation of ∀X .G . Therefore the incompatibility
described here does not apply only to GSF: in fact, we have been able to prove that Lemma 9.1 also
holds in λB [Ahmed et al. 2017], whose notion of parametricity is essentially the same as GSF.
By sticking to this standard notion of parametricity, one way to accommodate the dynamic

gradual guarantee is to change the definition of precision, as done by Igarashi et al. [2017a]
(denying that t1 ⊑ t2 in the proof of Corollary 9.2). We believe this is questionable, because
precision is a syntactic and intuitive notion describing łhow static a type isž, and replacing parts
of a type with ? is clearly making it łless staticž (recall ğ2.3). Dually, if one sticks to the natural
notion of precision, as adopted by both GSF and CSA, and justified by the AGT interpretation,
reconciliation might come from considering other forms of parametricity, or perhaps less flexible
gradual language designs [Devriese et al. 2018]. Currently, it seems that the incompatibility of
the dynamic gradual guarantee with parametricity has to be understood, in conjunction with a
similar observation regarding noninterference [Toro et al. 2018a], as hinting towards further refined
criteria for semantically-rich gradual typing. In particular, weaker forms of the dynamic gradual
guarantee might still be useful, as explored next.

10 GRADUAL FREE THEOREMS IN GSF

The parametricity logical relation (ğ8) allows us to define notions of logical approximation (⪯) and
equivalence (≈) that are sound with respect to contextual approximation (⪯ctx ) and equivalence
(≈ctx ), and hence can be used to derive free theorems about well-typed GSF terms [Ahmed et al. 2017;
Wadler 1989]. The definitions of contextual approximation and equivalence, and the soundness of
the logical relation, are fairly standard.

As shown by Ahmed et al. [2017], in a gradual setting, the free theorems that hold for System F
are weaker, as they have to be understood łmodulo errors and divergencež. Ahmed et al. [2017]
prove two such free theorems in λB. However, these free theorems only concern fully static type
signatures. This leaves unanswered the question of what imprecise free theorems are enabled by
gradual parametricity. To the best of our knowledge, this topic has not been formally developed in
the literature so far, despite several claims about expected theorems, exposed hereafter.
Igarashi et al. [2017a] report that the System F polymorphic identity function, if allowed to be

cast to ∀X .? → X , would always trigger a runtime error when applied, suggesting that functions
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N
Σ
ρ JB ⊑ GK = {v = εb :: G ′ | Σ ; ·; · ⊢ v : G}

N
Σ
ρ JT1 → T2 ⊑ GK = {v = εu :: G ′ | v ∈ ImpSVΣ

ρ [T1 → T2 ⊑ G]∧

∀v ′ ∈ N
Σ
ρ JT1 ⊑ dom♯(G)K, (εu :: dom♯(G ′) → cod♯(G ′)) v ′ ∈ C

Σ
ρ JT2 ⊑ cod♯(G)K}

N
Σ
ρ J∀X .T ⊑ GK = {v = εu :: G ′ | v ∈ ImpSVΣ

ρ [∀X .T ⊑ G] ∧ (∀T ′
, Σ ⊢ T ′

, Σ ▷ (εu :: ∀X .schm♯(G ′))[T ′]

7−→ Σ,α := T ′
▷ ε ′t ′ :: G ′ ∧ t ′ ∈ C

Σ,α :=T ′

ρ[X 7→α ]
JT ⊑ schm♯(G)K)}

N
Σ
ρ JT1 ×T2 ⊑ GK = {v = εu :: G ′ | v ∈ ImpSVΣ

ρ [G1 ×G2 ⊑ G]∧

(pi (ε)πi (u) :: proj
♯
i (G

′)) ∈ N
Σ
ρ JTi ⊑ proj♯i (G)K}

N
Σ
ρ JX ⊑ GK = N

Σ
ρ Jρ(X ) ⊑ ρ(G)K

N
Σ
ρ Jα ⊑ GK = {v = εu :: G ′ | v ∈ ImpSVΣ

ρ [α ⊑ G] ∧ Σ(α) = T∧

∀G ′
,T ⊑ G ′

, (⟨π1(ε), liftΣ (T )⟩u :: G ∈ C
Σ
ρ JT ⊑ G ′K}

C
Σ
ρ JT ⊑ GK = {t | Σ ; ·; · ⊢ t : Σ(ρ(G)) ∧ Σ ▷ t 7−→∗

Σ
′
▷ v ∧v ∈ N

Σ
′

ρ JT ⊑ GK}

ImpSVΣ
ρ [T ⊑ G] = {v = εu :: G ′ | static(u) ∧ π2(ε) = liftΣ (ρ(T )) ∧ Σ ; ·; · ⊢ v : ρ(G)}

Σ ;∆; Γ |= t : T ⊑ G ≜ Σ ;∆; Γ ⊢ t : G ∧ ∀ρ ∈ DΣ J∆K,∀γ ∈ G
Σ
ρ JΓK, ρ(γ (t)) ∈ C

Σ
ρ JT ⊑ GK

Fig. 7. Imprecise termination logical predicate.

of type ∀X .? → X are always failing. Consequently, System FG rejects such a cast by tweaking
the precision relation (ğ2.3). But the corresponding free theorem is not proven. Also, Ahmed et al.
[2011] declare that parametricity dictates that any value of type ∀X .X → ? is either constant or
always failing or diverging (p.7). This gradual free theorem is not proven either. In fact, in both an
older system [Ahmed et al. 2009] and its newest version [Ahmed et al. 2017], as well as in System FG ,
casting the identity function to ∀X .X → ? yields a function that returns without errors, though the
returned value is still sealed, and as such unusable (ğ2.4). Considering that the underlying function
is intrinsically parametric, why shall we expect it to fail or return unusable values? In fact, while
the specific choice of runtime semantics may decree failure, such behavior is not imposed by the
parametricity relation per se. Parametricity only imposes uniformity of behavior, including failure,
of polymorphic terms, which leaves some freedom regarding when to fail.

Disproving Gradual Free Claims. We uncover a novel property of GSF: it preserves the strong
normalization property of System F terms even as they are ascribed to less precise types, as long as
they are used with similarly-terminating terms, and instantiated at static types.
We establish this result using a logical predicate, named imprecise termination (Figure 715),

whose statement |= t : T ⊑ G expresses that t is a static term of type T that has been ascribed a
less precise type G. As usual, the predicates for values and terms carry a type environment and
type name store; we do not need step indexing because the logical relation is defined inductively
on the structure of T (not G). At the function type, the predicate specifies that when applied
to an imprecisely-terminating argument, the application terminates and yields an imprecisely-
terminating result. For type application, only static type instantiations are considered. The predicate
ImpSVΣ

ρ [T ⊑ G] characterizes imprecisely-ascribed static values. The rest of the definitions are
essentially administrative ascriptions to align types as required by GSFε .

Static terms satisfy the imprecise termination predicate, and are hence hereditarily terminating:

15 schm♯ (consistently) extracts the schema of a gradual type, i.e. schm♯ (∀X .G) = G , schm♯ (?) = ?, undefined o/w.
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Lemma 10.1. Let t be a static term. If ⊢ t : T and T ⊑ G, then ⊢ (t :: G) { t ′ : G and |= t ′ : T ⊑ G .

This property is related to, but weaker than the dynamic gradual guarantee. Nevertheless, it
is powerful enough to disprove the claims from the literature about ∀X .? → X and ∀X .X → ?:
both types admit the ascribed System F identity function, among many others,16 as a non-constant,
non-failing, parametricity-preserving inhabitant. We believe this result constitutes a valuable
compositionality guarantee when embedding fully-static (System F) terms in a gradual world.
Another corollary is that closed static terms always terminate (by |= t : T ⊑ T ), hence superseding
Proposition 7.4.

Cheap Theorems. The intuition of ∀X .? → X denoting always-failing functions is not entirely
misguided: this result does hold for a subset of the terms of that type. This leads us to observe that
we can derive łcheap theoremsž with gradual parametricity: obtained not by looking only at the
type, but by also considering the head constructors of a term. For instance:

Theorem 10.2. Let v ≜ ΛX .λx : ?.t for some t , such that ⊢ v : ∀X .? → X . Then for any ⊢ v ′ : G,
we either have v [G] v ′ ⇓ error or v [G] v ′ ⇑.

This result holds independently of the body t , therefore without having to analyze the whole term.
Not as good as a free theorem, but cheap.

11 RELATED WORK

We have already discussed at length related work on gradual parametricity, especially the most
recent developments [Ahmed et al. 2017; Igarashi et al. 2017a; Xie et al. 2018]. In addition to static
semantics issues in λB and System FG , all theses languages suffer from dynamic semantics that do
not accurately track type instantiations (ğ2.4). Note that, conversely to λB, GSF does not impose
any syntactic value restriction on polymorphic terms; such a restriction might be necessary when
exploring the extension of GSF with implicit polymorphism. Finally, instead of leaving the dynamic
gradual guarantee as a conjecture, we show that it is incompatible with parametricity, at least given
the standard definitions of both notions. Note that some language features are also known to break
the dynamic gradual guarantee, such as structural type tests and object identity [Siek et al. 2015a],
as well as method overloading and extension methods [Muehlboeck and Tate 2017].

The relation between parametric polymorphism in general and dynamic typing much predates
the work on gradual typing. Abadi et al. [1991] first note that without further precaution, type
abstraction might be violated. Subsequent work explored different approaches to protect para-
metricity, especially runtime-type generation (RTG) [Abadi et al. 1995; Leroy and Mauny 1991;
Rossberg 2003]. Pierce and Sumii [2000] and Guha et al. [2007] use dynamic sealing, originally
proposed by Morris [1973], in order to dynamically enforce type abstraction. Matthews and Ahmed
[2008] also use RTG in order to protect polymorphic functions in an integration of Scheme and ML.
This line of work eventually led to the polymorphic blame calculus [Ahmed et al. 2011] and its
most recent version with the proof of parametricity by Ahmed et al. [2017]. We adapt their logical
relation to the evidence-based semantics of GSF.
Hou et al. [2016] prove the correctness of compiling polymorphism to dynamic typing with

embeddings and partial projections; the compilation setting however differs significantly from
gradual typing. New and Ahmed [2018] use embedding-projection pairs to formulate a semantic
account of the dynamic gradual guarantee, coined graduality, in a language with explicit casts. It
would be interesting to extend their simply-typed setting to parametric polymorphism, and study
the interplay of parametricity and graduality when casts, and possibly seals, are explicit as in the
work of Neis et al. [2009] on parametricity in a non-parametric language.

16e.g. ΛX .λx : X .λf : X →X .f x of type ∀X .X →(X→X )→X can also be ascribed to ∀X .X →?.
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Devriese et al. [2018] disprove a conjecture by Pierce and Sumii [2000] according to which the
compilation of System F to an untyped language with dynamic sealing is fully abstract, i.e. preserves
contextual equivalences. They show that, for similar reasons, the embedding of System F in current
polymorphic blame calculi is not fully abstract; their observation also applies to GSF. Full abstraction
might be too strong a criteria for gradual typing: already in the simply-typed setting, embedding
typed terms in gradual contexts is not fully abstract, because gradual types admit non-terminating
terms. Imprecise termination (ğ10) is a weaker, yet useful result that sheds light on gradual free
theorems about imprecise type signatures. It should be possible to generalize this result to account
for the harmless content of imprecise ascriptions; we leave this perspective for future work.
This work is generally related to gradualization of advanced typing disciplines, in particular

to gradual information-flow security typing [Disney and Flanagan 2011; Fennell and Thiemann
2013, 2016; Garcia and Tanter 2015; Toro et al. 2018a]. In these systems, one aims at preserving
noninterference, i.e. that private values dot not affect public outputs. Both parametricity and nonin-
terference are 2-safety properties, expressed as a relation of two program executions. While Garcia
and Tanter [2015] show that one can derive a pure security language with AGT that satisfies both
noninterference and the dynamic gradual guarantee, Toro et al. [2018a] find that in presence of
mutable references, one can have either the dynamic gradual guarantee, or noninterference, but
not both. Also similarly to this work, AGT for security typing needs a more precise abstraction for
evidence types (based on security label intervals) in order to enforce noninterference. Together,
these results suggest that new criteria are needed to characterize the spectrum of type-based
reasoning that gradual typing supports when applied to semantically-rich disciplines.

12 CONCLUSION

We uncover design flaws in prior work on gradual parametric languages that enforce relational
parametricity. We exploit the Abstracting Gradual Typing (AGT) methodology to design a new
gradual language with explicit parametric polymorphism, GSF. We find that AGT greatly stream-
lines the static semantics of GSF, but does not yield a language that respects parametricity by
default; non-trivial exploration was necessary to uncover how to strengthen the structure and
treatment of runtime evidence in order to recover parametricity. We show that parametricity is,
like noninterference [Toro et al. 2018a], incompatible with the dynamic gradual guarantee laid
forth by Siek et al. [2015a]. We nevertheless establish a novel, weaker property of GSF regarding
the embedding of System F terms at less precise types, which allows us to disprove some claims
from the literature about gradual free theorems.

Future work also includes extending GSF and its associated reasoning with existential types, both
in terms of their encoding, and as primitives in the language. We shall also study the integration of
implicit polymorphism on top of GSF, most likely following the approach of Xie et al. [2018]. Finally,
it would be interesting to understand whether the evidence-based runtime semantics presented
here can be used to derive a cast calculus akin to λB, and then address efficiency considerations.
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