
Modularity beyond
inheritance

Alexandre Bergel
RMoD team, INRIA,

Lille, France
alexandre@bergel.eu

!"#$

• To introduce research problems related to class-inheritance

• Present 2 state-of-the-art research topics related to class
inheritance

Goal of this lecture

Sources & references

• Wirfs-Brock & McKean, Object Design — Roles,
Responsibilities and Collaborations, 2003.

• Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz,
Classbox/J: Controlling the Scope of Change in Java, OOPSLA'05

• Damien Cassou, Stéphane Ducasse and Roel Wuyts, Traits at
Work: the design of a new trait-based stream library, In Journal
of Computer Languages, Systems and Structures, Elsevier,
2008

• Stephane Ducasse, Roel Wuts, Alexandre Bergel, and Oscar
Nierstrasz, User-Changeable Visibility: Resolving Unanticipated
Name Clashes in Traits, OOPSLA'07

Outline

1. Inheritance (single & multiple)

2. Classboxes: inheritance to express software evolution

3. Traits: inheritance to feature composition

4. Concluding words: complementing class inheritance as a
major Software Engineering effort

Inheritance

• Inheritance in object-oriented programming languages is a
mechanism to:

- derive new subclasses from existing classes

- where subclasses inherit all the features from their
parent(s)

- and may selectively override the implementation of some
features.

Inheritance mechanisms

• OO languages realize inheritance in different ways:

- self: dynamically access subclass methods

- super: statically access overridden, inherited methods

- multiple inheritance: inherit features from multiple superclasses

- abstract classes: partially defined classes (to inherit from only)

- mixins: build classes from partial sets of features

- interfaces: specify method argument and return types

- subtyping: guarantees that subclass instances can be substituted

Classboxes for evolution

I. Problem: AWT and Swing anomalies

II. Model: Classbox/J

III. Solution: Swing as a classbox

IV. Ongoing work: general scoping mechanism

Presentation of AWT

• In the AWT framework:

- Widgets are components (i.e., inherit from Component)

- A frame is a window (Frame is a subclass of Window)

java.awt

Component

ButtonContainerWindowFrame

Broken Inheritance in Swing

javax.swing

java.awt

Component

ButtonContainerWindowFrame

JButton

JComponent
JWindowJFrame

Problem: Code Duplication
java.awt

Component

ButtonContainerWindowFrame

javax.swing

JButtonaccessibleContext
rootPane
update()
setLayout()
...

accessibleContext
rootPane
update()
setLayout()
...

accessibleCont
extupdate()

Code Duplication

JComponent
JFrame JWindow

Problem: explicit type operation
public class Container extends Component {
 Component components[] = new Component [0];
 public Component add (Component comp) {...}
}

public class JComponent extends Container {
 public void paintChildren (Graphics g) {
 for (; i>=0 ; i--) {
 Component comp = getComponent (i);
 isJComponent = (comp instanceof JComponent);
 ...
 ((JComponent) comp).getBounds();
 }
 }}

Alternative to inheritance

• AWT couldn’t be enhanced without risk of breaking existing
code.

• Swing is, therefore, built on the top of AWT using subclassing.

• As a result, Swing is a big mess internally!

• We need an alternative to inheritance to support
unanticipated changes.

Classbox/J

• Module system for Java allowing classes to be refined
without breaking former clients.

• A classbox is like a package where:

- a class defined or imported within a classbox p can be
imported by another classbox (transitive import).

- class members can be added or redefined on an
imported class with the keyword refine.

- a refined method can access its original behavior using
the original keyword

Swing Refactored as a Classbox

javax.swing

AwtCB

Component

Container
WindowFrame

Button

JButtonaccessibleContext
rootPane
update()
setLayout()
...

accessibleContext
rootPane
update()
setLayout()
...

accessibleContext
extupdate()

JComponent
JFrame JWindow

Swing Refactored as a Classbox

SwingCB

AwtCB

Component

Container
Window

Component

Button

Frame Window
rootPane

setLayout()
setRootPane()
setContentPane()
...

accessibleContext
component

update()
add(Component)
remove(Component)

Frame
Button

Swing Refactoring

• 6500 lines of code refactored over 4 classes.

• Inheritance defined in AwtCB is fully preserved in SwingCB:

- In SwingCB, every widget is a component (i.e., inherits from
the extended AWT Component).

- The property “a frame is a window” is true in SwingCB.

• Removed duplicated code: the refined Frame is 29 % smaller
than the original JFrame.

• Explicit type checks like obj instanceof JComponent and
(JComponent)obj are avoided.

Properties of Classboxes

• Minimal extension of the Java syntax (transitive import,
refine and original keywords).

• Refinements are confined to the classbox that define them
and to classboxes that import refined classes.

• Method redefinitions have precedence over previous
definitions.

• Classes can be refined without risk of breaking former
clients.

Traits

I. Problem: Stream in Squeak anomalies

II. Model: Traits

III. Solution: Refactoring with Traits

IV. Ongoing work: Pure trait language

Stream in Squeak

• Example of a library that has been in use for almost 20
years

• Contains many flaws in its conception

Stream in Squeak

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Methods too high

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

nextPutAll: aCollection
 aCollection do: [:v| self nextPut: v].
 ^ aCollection

Methods too high

• The nextPut: method defined in Stream allows for element
addition

• The ReadStream class is read-only

• It therefore needs to “cancel” this method by redefining it
and throwing an exception

Unused state

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Unused state

• State defined in the super classes are becoming irrelevant in
subclasses

• FileStream does not use inherited variables

Multiple inheritance simulation

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Multiple inheritance

• Methods are duplicated among different class hierarchies

Class responsibilities

• Too many responsibilities for classes

- object factories

- group methods when subclassing
`

Class schizophrenia?

• Too many responsibilities for classes

- object factories => need for completeness

- group methods when subclassing => need to incorporate
incomplete fragments

Traits

TCircle
area
bounds
diameter
hash
...

radius
radius:
center
center:

• Traits are parameterized behaviors
- traits provide a set of methods
- traits require a set of methods
- traits are purely behavioral

Class = Superclass + State + Traits + Glue Methods

• Traits are the behavioral building blocks of classes

Generic properties
Object

Component Geometrical

RectangleWidget

setX1(...)
setY1(...)

RectangleShape

setX1(...)
setY1(...)TRectangle

TColorx1, y1, x2, y2 point1, point2

TRectangle

TColor

...

Composition rules

Class methods take precedence over trait methods

ColoredCircle

TColor
hue
rgb

draw

ColoredCircle

TColor
hue
rgb

TCircle
draw
radius
drawdraw

TCircle
draw
radius

Conflicts are explicitly resolved

• Override the conflict with a glue method

- Aliases provide access to the conflicting methods

• Avoid the conflict

- Exclude the conflicting method from one trait

ColoredCircle

TColor
hash

TCircle
hashhash -> circleHash

hash

ColoredCircle

TColor
hash

TCircle
hashhash hash -> circleHash

hash -> colorHash

Flattening property

ColoredCircle

TColor

TCircle
draw

rgb

draw

hue

radius

Object

ColoredCircle

Object

rgb
hue

radius

draw

equivalent
Structured view Flat view

Stream revisited

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
back
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream

nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Core

binary
close
closed
isBinary
isClosed
isStream

TStream

back
backUpTo:
match:
nextDelimited:
skip:

TGettablePositionableStream TPuttablePositionableStream

writeBack

@ {#basicBack->#back}

Concluding words

• Hard topic where proving a better solution requires a
significant effort

• Other hot topics: Virtual classes, Nested inheritance,
Selector namespaces

