
Engineering Domain SpecificEngineering Domain-Specific
Languages

Barrett R. Bryant

What are Domain-Specific
Languages?Languages?
• In contrast to general purpose programming

languages, domain-specific languages (DSLs) are
designed for a specific task.

• DSLs are usually more oriented toward theDSLs are usually more oriented toward the
application domain expert instead of software
engineers.

• DSLs are the primary new computer languages that• DSLs are the primary new computer languages that
will be developed and their development will be
more influenced by application domain demands
than software engineering concernsthan software engineering concerns.

2

Domain-Specific Language
PropertiesProperties
• Usually small, more declarative than

i i d l i h GPLimperative, and less expressive than GPLs.
(C. Consel)
Ma be e ec table specification lang age• May be executable specification language.
(A. van Deursen, P. Klint, J. Visser)

3

Domain-Specific Language
Properties (continued)Properties (continued)
• Conceptual distance is reduced between

the problem space and the language usedthe problem space and the language used
to express the problem.
Programming becomes simpler easier and• Programming becomes simpler, easier, and
more reliable.

• The amount of code which must be written• The amount of code which must be written
is reduced.

• Productivity is increased and maintenanceProductivity is increased and maintenance
costs are decreased.

(Center for Agile Technology – University(Center for Agile Technology University
of Texas at Austin)

4

Domain-Specific Language
Properties (continued)Properties (continued)
• A DSL provides a means by which domain

experts may express (through well definedexperts may express (through well defined
and clear syntax and semantics) the ideas
within the domain, with no need of previous
k l d b lknowledge about general programming.

• All the concepts from the domain (no more
and no less) are defined minimizing theand no less) are defined minimizing the
"semantic gap" that exists between the
problem's domain and the program, hiding
the implementation details and providing
"self- documentation" of the programs.

(LIFIA Universidad Nacional de La Plata(LIFIA, Universidad Nacional de La Plata,
Argentina) 5

Domain-Specific Language
Properties (continued)Properties (continued)
• DSLs, in many cases, are intended for use

by non-programmers (hence "end-userby non programmers (hence, end user
languages").

• In most cases, efficiency is not a major , y j
concern, and user convenience and
conciseness is paramount.

(S K i)(S. Kamin)

6

Domain-Specific Language
Properties (continued)Properties (continued)
• DSLs offer substantial gains in

i d f dexpressiveness and ease of use compared
with GPLs in their domain of application.
(M Mernik J Heering A Sloane)(M. Mernik, J. Heering, A. Sloane)

7

Disadvantages of DSLs

• The costs of designing, implementing and
maintaining a DSLmaintaining a DSL.

• The costs of education for DSL users.
• The limited availability of DSLs.y
• The difficulty of finding the proper scope for a DSL.
• The difficulty of balancing between domain-

ifi i d l ispecificity and general-purpose programming
language constructs.

• The potential loss of efficiency when compared withThe potential loss of efficiency when compared with
hand-coded software.

(van Deursen, Klint, Visser)

8

Widely Used DSLs

• BNF (Syntax specification)
Excel macro language (Spreadsheets)• Excel macro language (Spreadsheets)

• HTML (Hypertext web pages)
• LaTeX (Typesetting)LaTeX (Typesetting)
• Make (Software building)
• SQL (Database queries)
• VHDL (Hardware design)

9

Applicability of DSLs

• DSLs have been used in various domains.
These applications have clearly illustrated• These applications have clearly illustrated
the advantages of DSLs over GPLs in
productivity, reliability, maintainability and p y, y, y
flexibility.

• However, the cost for DSL design,
d l t d i t h t bdevelopment and maintenance has to be
taken into account.

• Without an appropriate methodology and• Without an appropriate methodology and
tools this costs can be higher than savings
obtained by the later use of DSL.

10

GPL Features of DSLs

• Values (Types)yp
– Primitive (very often domain specific) and composite

values
– Many DSLs are typed, allowing the detection ofMany DSLs are typed, allowing the detection of

specification errors.
– Many DSLs provide, in addition to standard expressions

like operators (function calls) and variable access, alsolike operators (function calls) and variable access, also
built-in operators which are specific to the domain of the
language.

11

GPL Features of DSLs (continued)

• Storage
– Many DSLs provide user-defined variables, and thus a

store.
– DSLs uses the store not only for communication between

b ll f i i b hstatements but as well for communication between the
program and its execution model.

– Many DSLs provide assignment, sequencing, conditional,
and iterative statementsand iterative statements.

– DSLs usually provide domain specific commands and
might provide also domain specific conditional and
iterative commands

12

GPL Features of DSLs (continued)

• Bindingsg
– Many DSLs use bindings in order to have more

concise specifications.
– Declarations are often implicit.

• Abstractions
– Most DSLs do not provide general-purpose

abstraction mechanisms.
– It is often possible to provide a fixed set ofIt is often possible to provide a fixed set of

abstractions that are sufficient for all the
applications in a domain.

– Declarative abstraction mechanism
13

GPL Features of DSLs (continued)

• Abstractions
– GPLs focus on providing powerful abstraction

mechanisms, whereas a DSL strives to provide
h i h f d fi d b i dthe right set of predefined abstractions and

does not necessarily include abstraction
mechanisms.

– A GPL cannot possibly provide the right
abstractions needed for all possible
applications but since a DSL has a restrictedapplications, but since a DSL has a restricted
domain, it is possible to provide some, if not all,
of the right abstractions.

14

GPL Features of DSLs (continued)

• Encapsulationp
– DSLs are not intended for programming-in-the-

large
• Type-systems

– Usually monomorphic since DSLs use
b t ti i t i t dabstractions in a restricted manner

• Sequencers
DSLs might have jumps (goto) and domain– DSLs might have jumps (goto) and domain
specific escapes

15

Domain Analysis

• A DSL is a programming language p g g g g
dedicated to a particular domain and
provides appropriate built-in abstractions
and notations.
– We need to do Domain Analysis.

l l f l• Programs in DSLs explicitly specify only
part of the behavior because a significant
portion of the behavior is implicit andportion of the behavior is implicit and
fixed.
– We need to discover fixed and variable parts ofWe need to discover fixed and variable parts of

the domain.
16

Domain Analysis

• Domain: an area of knowledge or activity g y
characterized by a set of concepts and
terminology understood by practitioners in
that area.

• Domain Analysis: The process of
id if i l i d iidentifying, analyzing and representing a
domain model and software architecture
from the study of existing systemsfrom the study of existing systems,
underlying theory, emerging technology
and development histories within theand development histories within the
domain of interest.

17

Domain Analysis Process

Sources of Domain
Domain Anal sisKnowledge Domain Analysis
methods

Technical literatureTechnical literature

Existing implementations

Domain
Analysis

Domain ModelCustomer Surveys

Expert advice
Current and future
requirementsrequirements

18

Domain Model

• A domain model is:
– an explicit representation of the common and

the variable properties of the system in a
d idomain,

– the semantics of the properties and domain
concepts,concepts,

– the dependencies between the properties.

19

Domain Model

• Domain definition: defines the scope of a domain
and characterizes its contents by giving examplesand characterizes its contents by giving examples,
counterexamples, and generic rules for inclusion or
exclusion.

• Terminology: defines the domain lexicon.
• Concept models: describe concepts in a domain in

some appropriate modeling formalism andsome appropriate modeling formalism and
informal text.

• Feature models: describe the common and the
variable properties of concepts and their
interdependencies. Feature models represents
configuration aspects of the concept modelsconfiguration aspects of the concept models.

20

Domain Analysis

• Analysis of similarity: Analyze similarities y y y
between entities, activities, events,
relationships, structures, etc.

• Analysis of variations: Analyze variations
between entities, activities, events,

l i hirelationships, structures, etc.
• Analysis of combinations: Analyze

bi ti ti t i l t t lcombinations suggesting typical structural
or behavioral patterns.

21

Feature Modeling Using FODA

• Feature models are used in Domain Analysis to
capture commonalities and variabilities of systemscapture commonalities and variabilities of systems
in a domain.

• Feature models consist of:
– Feature diagram: represents a hierarchical decomposition

of features and their kinds (mandatory, alternative,
optional feature)p)

– Feature definitions: describe all features (semantics)
– Composition rules for features: describe which

combinations are valid/invalidcombinations are valid/invalid
– Rationale for features: reasons for choosing a feature

• Feature-Oriented Domain Analysis (FODA)
http://www.sei.cmu.edu/domain-
engineering/FODA.html 22

Feature Modeling Using FODA
(continued)(continued)

• Mandatory features: each system in the y y
domain must have certain features.

• Alternative features: A system can have y
only one feature of a time.

• Optional features: A system may or may not
have certain features.

• Or-features: A system can have more than
one feature.

23

Feature Modeling Using FODA
(continued)(continued)

• Feature interdependencies are captured p p
using composition rules:
– Requires rules: capture implications between

features
– Mutually-exclusive rules: Model constraints on

feature combinationsfeature combinations
• Features are end-user characteristics of a

systemy
• An instance of a feature diagram consists

of an actual choice of features matching the
i t i d b th direquirements imposed by the diagram.

24

Example Feature Diagram
Car

Mandatory

Optional feature

y
Features

Transmission Horsepower Air Conditioning

Optional feature

Composition rule:
Air ConditioningAlternative

Manual Automatic

Air Conditioning
requires Horsepower >
100

Features

Rationale:Rationale:
Manual is more
fuel efficient 25

FODA

• Atomic features cannot be further subdivided into
th f tother features.

• Composite features are features that are defined in
terms of other features.

f f f• Common features of a concept are features
present in all instances of concept.
– All mandatory features whose parent is the concept are

common featurescommon features.
– Also, all mandatory features whose parents are common

are themselves common features.
• Variability in the feature diagram is expressedVariability in the feature diagram is expressed

using optional, one-of, and more-of features.
These features are called also variable features.
Nodes to which those features are attached are

ll d i i icalled variation points.
26

FODA

• Feature models are used in Domain
Analysis to capture:
– commonalities (mandatory features)
– variabilities (optional, one-of, more-of features)

• Feature diagrams concisely describe all
f fpossible configurations (called instances) of

a system, focusing on the features that may
differ in each of the configurationdiffer in each of the configuration.

27

FODA

• Variability rules – count the number of y
possibilities for a given feature diagram

(C–concept, A–atomic feature, F–composite)
– Var(A)=1 // atomic feature
– Var(F?)=var(F)+1
– Var(one-of(F1 … Fn)) = var(F1) + …+var(Fn)
– Var(more-of(F1 … Fn)) = (var(F1)+1) * …* (var(Fn)+1) -1
– Var(C is F1 Fn) = var(F1)* * var(F2)– Var(C is F1 … Fn) = var(F1) … var(F2)

28

Example

• Var(Car)=1*2*3*3*2=36
Car

E iT i i H PB d ll T ilEngineTransmission HorsePowercarBody pullsTrailer

manual electricautomatic
Lo Po er

HighPowergasoline

mediumPower

LowPower
g

29

DSL Development

• Usually, during DSL development a domain analysis
is done informallyis done informally.

• It is highly suggested that domain analysis is done
formally (e.g., FODA).y g ,

• How can a DSL be developed from the information
gathered from a domain analysis?
N l id li i !• No clear guidelines exist!

• Some of them are presented in S. Thibault.
Domain-Specific Languages ConceptionDomain Specific Languages. Conception,
Implementation and Application, Ph.D. Thesis

30

DSL Design

DomainDomain
Analysis

Terminology
C tConcepts

Commonalities
V i ti

Constraints:
Language level, Domain Specific

Variations

Language level,
Analyzability

Domain-Specific
Language

DSL
Design

31

DSL Design

• The list of variations indicate precisely what p y
information is required to specify an instance of a
system.
This information must be directly specified in or be• This information must be directly specified in or be
derivable from programs in the DSL.

• Terminology and concepts are used to guide the gy p g
development of the actual DSL constructs which
coresponds to the variations.
The commonalities are used to define the• The commonalities are used to define the
execution model (through a set of common
operations) and primitives of the language.

32

DSL Development

• Terminologygy
– One desirable property of a DSL is to permit

specification in a familiar notation to the
d idomain expert.

– Naming the abstractions in the language after
the standard terminology used by domainthe standard terminology used by domain
experts is part of achieving this goal.

33

DSL Development
• Commonalities

– Common parts: correspond to primitive types andCommon parts: correspond to primitive types and
operators in the language

– Common assemblies: may correspond to the execution
model or language control constructsmodel or language control constructs

• Designing a language involves defining the
constructs in the language and giving the

i h l h h f lsemantics to the language, whether formal or
informal.

• The semantics of the language describe theThe semantics of the language describe the
meaning of each construct in the language but also
some fixed behavior that it is not specified by the
programprogram.
– Execution model of a DSL is much richer than in GPL 34

DSL Development

• Variations
– Data variations – behavior that varies with

respect to the values used in computations
– Behavioral variations – behavior whose data or

control flow varies
Variations can be further classified to the• Variations can be further classified to the
range of variation:
– Range is finite and smallRange is finite and small
– Range is infinite or large

35

DSL Development
• For variations whose range is finite and

small, attributes can be used to describe thesmall, attributes can be used to describe the
variations.
– constant definition for uniform behavior – behavior

th t t h d i tithat cannot change during program execution
– variable declaration or function/procedure

definition for non-uniform behavior
– functions/procedures may be provided whose

arguments are the values to be given to the
variations.

• For variations which are infinite or large, a
set of operations and/or commands must be
provided that can be combined to specifyprovided that can be combined to specify
any behavior in the range of variations. 36

Example

• Let’s develop a language for describing
feature diagramsfeature diagrams

FeatureDiagram

Constraints
Nodes Transitionsconcept

Constraints

excluderequire

composite optionalatomic mandatory more-
of

one-
of

37

Example
Car: all(carBody, Transmission, Engine, HorsePower,

pullsTrailer?)
T i i f(i l)Transmission: one-of(automatic, manual)
Engine: more-of(electric, gasoline)
HorsePower: one-of(lowPower, mediumPower, highPower)

car (carBody,
transmission (automatic | manual),
engine (electric + gasoline),
horsePower (lowPower | mediumPower | highPower)horsePower (lowPower | mediumPower | highPower),
trailer [pullsTrailer])

car (carBody, transmission, engine, horsePower, trailer)g
transmission (automatic | manual)
engine (electric + gasoline)
horsePower (lowPower | mediumPower | highPower)
trailer [pullsTrailer]trailer [pullsTrailer]

38

DSL Design

• Approaches to DSL design can be
h i d l h lcharacterized along two orthogonal

dimensions:
the formal nature of the design description– the formal nature of the design description

– the relationship between the DSL and existing
languagesg g

39

DSL Design

• In an informal design the specification is usually in
some form of natural language probably including asome form of natural language probably including a
set of illustrative DSL programs.

• Informal language designs can contain imprecision
that causes problems in the implementation phasethat causes problems in the implementation phase.
They typically focus on syntax, leaving semantic
concerns to the imagination.

l f f b h d• Formal specification of both syntax and semantics
can bring problems to light before implementation.

• Formal designs can be implemented automatically g p y
by tools, thereby significantly reducing
implementation effort.

40

DSL Design

• The easiest way to design a DSL is to base it
i i lon an existing language.

• One possible benefit is familiarity for users,
b t this onl applies if the domain sers arebut this only applies if the domain users are
also programmers in the existing language,
which is often not the casewhich is often not the case.
– Existing language is partially used
– Existing language is restricted g g g
– Existing language is extended

41

DSL Design

• If there is no relationship between the DSL p
and an existing language then DSL design
is very similar to GPL design with additional
constraints.

• The DSL designer has to keep in mind both
h i l h f DSL ll hthe special character of DSLs as well as the

fact that users need not be programmers.

42

DSL Design

• Of particular importance for DSLs are the
l l f b i h l h dlevel of abstraction the language has and
the degree to which it may be analyzed.
The abstraction le el of the lang age is• The abstraction level of the language is
directly related to the common goals of
reuse and accessibility to end-usersreuse and accessibility to end users,

• The ability to automatically analyze a DSL
program and to verify or computeprogram and to verify or compute
properties of the program is a main goal of
some DSLs.

43

Lessons Learned from Real DSL
Experiments (D. Wile, HICSS-36, 2003)p (, ,)

• Technological issues
• Organizational issues
• Social issues

44

Lessons Learned from Real DSL
Experiments (D Wile HICSS-36 2003)Experiments (D. Wile, HICSS 36, 2003)
• Lesson T1: Adopt whatever formal

notations the domain experts already havenotations the domain experts already have,
rather than invent new ones.

• Lesson T1 Corollary 1: Use their jargonLesson T1 Corollary 1: Use their jargon
terms whenever possible.

• Lesson T1 Corollary 2: One should look to
informal notations of the domain as the
foundation for the DSL .
Lesson T1 Corollary 3: Adopt conventional• Lesson T1 Corollary 3: Adopt conventional
notations, rather than invent an
idiosyncratic one. y

45

Lessons Learned from Real DSL
Experiments (D Wile HICSS-36 2003)Experiments (D. Wile, HICSS 36, 2003)

• Lesson T2: You are almost never designing
i l (M DSLa programming language. (Most DSL

designers come from language design
backgrounds The admirable principles ofbackgrounds. The admirable principles of
orthogonality and economy of form are not
necessarily well-applied to DSL design)y pp g)

• Lesson T2 Corollary: Design only what is
necessary. Learn to recognize your y g y
tendency to over-design.

46

Lessons Learned from Real DSL
Experiments (D Wile HICSS-36 2003)Experiments (D. Wile, HICSS-36, 2003)
• Lesson T3: Strive for an 80% solution.

L O1 U d d h i i l• Lesson O1: Understand the organizational
roles of the people who will be using your
language.language.

• Lesson O1 Corollary 1: Understand the
background expertise of the people
affected by the DSL technology
introduction.
Lesson O1 Corollary 2: Understand the• Lesson O1 Corollary 2: Understand the
present solution design process thoroughly
before undertaking to substitute a DSL g
approach.

47

Lessons Learned from Real DSL
Experiments (D Wile HICSS-36 2003)Experiments (D. Wile, HICSS 36, 2003)

• Lesson O2: Be sure that the intended
h l f ftechnology transfer process from your

product into their organization’s
infrastructure is consistent with theirinfrastructure is consistent with their
business model.

• Lesson S1: Find an advocate for yourLesson S1: Find an advocate for your
technology in their organization.

• Lesson S1 Corollary: Establish close tiesLesson S1 Corollary: Establish close ties
with a domain expert to produce the
infrastructure that the system will be
translated into.

48

Lessons Learned from Real DSL
Experiments (D Wile HICSS-36 2003)Experiments (D. Wile, HICSS-36, 2003)
• Lesson S3: Do not expect the domain

k h hexperts to know what the computer can
(should) do for them.
Lesson S3 Corollar 1 Do not e pect the• Lesson S3 Corollary 1: Do not expect the
domain experts to understand what the
computer cannot possibly do for them!computer cannot possibly do for them!

• Lesson S3 Corollary 2: Do not expect your
users to overlook or forgive your designusers to overlook or forgive your design
mistakes.

49

Can a DSL Implementation be
Produced from Examples?Produced from Examples?
• GenParse/GenInc is a suite of grammar

i f l d l d b UAB d hinference tools developed by UAB and the
University of Maribor (Slovenia) to derive
DSL grammars from example programsDSL grammars from example programs

• The tools are successful when the set of
sample programs is good especially whensample programs is good, especially when
augmented by negative samples.

• Samples should be provided by domainSamples should be provided by domain
experts.

50

Conclusions

• Domain-specific languages are promising p g g p g
tools to assist domain experts in specifying
their programs.

• Most language development will be for
DSLs, not new GPLs.

• There are promising tools to help domain
experts build DSLs.

51

Acknowledgements

• Many slides adapted from UAB course on
d i ifi l h bdomain-specific languages taught by
Professor Marjan Mernik.
Additional reference• Additional reference:
M. Mernik, J. Heering, A. M. Sloane, “When
and How to Develop Domain Specificand How to Develop Domain-Specific
Languages,” ACM Computing Surveys 87, 4
(December 2005), 816-844.(December 2005), 816 844.

• Further information:
http://www cis uab edu/softcomhttp://www.cis.uab.edu/softcom
bryant@cis.uab.edu 52

