Programming with Intent

Summer School
November 12, 2008

Christopher Dutchyn
University of Saskatchewan

Quicksort

-- qsort : : int List -> int List

Quicksort

-- qsort : : int List -> int List qsort lst = lst

Quicksort

-- qsort : : int List -> int List
-- tests!
-- qsort $[1,2,3]$--> $[1,2,3]$
-- qsort $[3,2,1]$--> $[1,2,3]$

Quicksort

-- qsort : : int List -> int List
-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort $[3,2,1]$--> $[1,2,3]$
qsort $[1,2,3]=[1,2,3]$
qsort [3,2,1] = [1,2,3]
qsort lst = lst

Quicksort

```
-- qsort :: int List -> int List
-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]
qsort [1,2,3] = [1,2,3]
qsort [3,2,1] = [1,2,3]
qsort _ lst = lst
```

- testing proves correctness at point level
- powerful but limited range

Can we do better?

Idea: lets use types to express programmer intent

Omega \approx Haskell

- Additions
- Unbounded number of computational levels
- values (*0), types (*1), kind (*2), sorts (*3), ...
- Data structures at all levels
- Generalized Algebraic Data Types (GADTs)
- Functions at all levels
- Staging
- Subtractions
- Type classes
- Laziness

Programming with Types ${ }^{\dagger}$

An object with structure at the type level

```
data Nat:: *1 where
```

Z: : Nat
S: : Nat ~> Nat the *1 means Nat is a kind, and \mathbf{S} and \mathbf{z} yield types
${ }^{\dagger}$ with kudos to Stephanie Weirich

Kinds

Objects with Structure at the type Level * 1 means a
kind
data Nat:: *1 where
Z: : Nat
S:: Nat ~> Nat

- A kind of natural numbers

- Classifies types Z, S Z, S (S Z)...
- Such types don't classify values

Example Kinds

data State:: *1 where

Locked:: State
Unlocked:: State
Error:: State
data Color:: *1 where
Red: : Color
Black: : Color

More Examples

data Boolean:: *1 where

T: : Boolean
F: : Boolean

data Shape : : *1 where
Tp: : Shape
Nd:: Shape
Fk: : Shape ~> Shape ~> Shape

Functions use pattern-matching equations. Every type function must have a prototype.

Type functions

plus : : Nat ~> Nat ~> Nat
\{plus Z m\} $=\mathrm{m}$
\{plus (S n) $m\}=S$ \{plus $n m\}$

At the type level and above, type constructor application uses juxatposition.

At the type level and above we surround function
application with braces.

Functions over types

even : : Nat ~> Boolean
\{even $Z\}=T$
$\{$ even (S Z) \} $=F$
$\{\operatorname{even}(S(S n))\}=\{$ even $n\}$

More examples

and:: Boolean ~> Boolean ~> Boolean $\{$ and $T \mathbf{x}\}=\mathbf{x}$
$\{$ and $F \mathbf{x}\}=F$

Type level data structures

data LE : : Nat ~> Nat ~> *0 where Base_LE : : LE Z a Step_LE : LE a b \rightarrow LE (S a) (S b)

Base_LE witnesses that Z (zero as a type-level natural number) is known to be less than any other Step_Le extends this inductively to cover all larger successive cases type-level natural number.

Relationships between types

le23 : : LE \#2 \#3
le23 $=$ Step_LE (Step_LE Base_LE)
le2x : : LE \#2 \# (2+a)
le2x $=$ Step_LE (Step_LE Base_LE)

Type Functions v.s. Witnesses

```
even:: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))}={even n}
le:: Nat ~> Nat
    ~> Boolean
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} =
    {le n m} \{le n m\}
```

data Even:: Nat ~> *0 where

EvenZ: : Even Z
EvenSS: : Even n -> Even (S (S n))
data LE:: Nat ~> Nat ~> *0 where

LeZ: : LE Z n
LeS: : LE n m ->
LE (S n) (S m)

Type indexed data

*0 means BSeq is a type, and Nil and Cons are values
data BSeq : : Nat $\sim>$ Nat $\sim>$ *0 where
Nil : : LE min max $=>$ BSeq min max
Cons : : (LE min m, LE m max) =>

Explicitly classify both
BSeq, and its constructor functions, Nil and Cons, with their full classification

Nat' m -> BSeq min max
-> BSeq min max

LE automatically ensures the type-level constants min and max satisfying LE min m and LE m max exist

Helper function

```
The + is the disjoint union
```

```
mapP :: (a -> b) -> (c -> d) -> (a+c) -> (b+d)
```

mapP :: (a -> b) -> (c -> d) -> (a+c) -> (b+d)
mapP f g (L x) = L (f x)
mapP f g (R x) = R (g x)

```

\section*{Value-level fn typed by type-level fn}


\section*{Another Operation}
\[
\begin{array}{r}
\text { qsplit : : (LE min piv, } \text { LE piv max) }=> \\
\text { Nat' piv }->\text { BSeq min max } \\
->\text { (BSeq min piv, } \\
\text { BSeq piv max) }
\end{array}
\]
qsplit piv Nil = (Nil,Nil) small and large qsplit piv (Cons \(x\) xs) \(=\) case compare \(x\) piv of
\[
\begin{aligned}
& \text { L p1 -> (Cons x small, large) } \\
& \text { R p1 -> (small, Cons x large) }
\end{aligned}
\]
\[
\text { where (small,large) }=\text { qsplit piv xs }
\]

\section*{A useful definition -- of a sorted list}
data SL : : Nat ~> Nat ~> *0 where
SNil : : SL x x

Cons : : LE min min' =>
a sorted list between \(\min ^{\prime}\) and max

Nat' min \(->\) SL min' max
a value \(\left({ }^{*} 0\right.\) ) less \(\quad \rightarrow\) SL min max than min'

\section*{Another utility -- appending sorted lists}
```

app :: SL min piv -> SL piv max -> SL min max
app SNil ys = ys
app (SCons min xs) ys = SCons min (app xs ys)
sorting property is preserved

```

\section*{Using these Operations}
qsort : : BSeq min max ->
\[
\text { exists } t \cdot L E \min t=>S L t \max
\]

Ex is an anonymous
qsort Nil \(=\) Ex (SNil) existential type qsort (x @ (Cons pivot tail)) = (Ex (app smaller'
(SCons pivot larger'))) where (smaller,larger) = qsplit pivot tail
(Ex (smaller')) = (qsort smaller)
(Ex (larger')) = (qsort larger)

\section*{Ensuring Static Checking}
```

prop LE :: Nat ~> Nat ~> *O where
Base_LE :: LE Z a
Step_LE :: LE a b -> LE (S a) (S b)

```

\section*{Why Not Use C or Haskell?}
- Most traditional languages like C don't have strong type systems that enforce the discipline necessary,
- Even in Haskell, we can't create data structures whose types can capture the types of \(\mathbf{Z}, \mathbf{E}\), and \(\mathbf{0}\).
- GHC is adding this capability
- We can't parameterize types (like Even and Odd) with objects like \(\mathbf{z}\) and ( \(\mathbf{S} \mathbf{z}\) ) since these are values not types.
- GHC Type families are growing this capability

\section*{Summary}
- Techniques exist for writing verified programs - not just tested ... verified
- including compilers [Leroy, 2007]
- This is one approach
- extracting program from proof is another
- The future of programming is visible!
- proven programs

\section*{Acknowledgements}
- thanks to Tim Sheard for gracious permission to use parts of his Omega material

Omega
- web.cecs.pdx.edu/~sheard/Omega/index.html

\title{
Yes! We Can!
}

And, it's not that hard!

\section*{What Makes This Work}
- type checking as computation
- closely related to typing as abstract interpretation
- cf. Cousot and Cousot
- guarded algebraic data types
- types as propositions / programs as proofs - Curry Howard isomorphism

\section*{Type Checking}
- Type checking is compile-time computation.
\[
\Gamma|-f: c \rightarrow d \quad \Gamma|-x: b \quad b \cong c
\]
\[
\Gamma \mid-f x: d
\]
\(b \cong c\) means \(b\) is mutually consistent

\section*{Mutually consistent}
- Pascal
\(-b \cong c\) means \(b\) and \(c\) are structurally equal
- Haskell
\(-b \cong c\) means \(b\) and \(c\) unify
Java
\(-b \cong c\) means \(b\) is a subtype of \(c\)
- Dependent typing
\(-\mathrm{b} \cong \mathrm{C}\) means b and c "mean the same thing"

\section*{Type Checking = CSP}
- Every function leads to a set of constraints
- If the constraints have a solution, the function is well typed.
- In Omega (as in dependent typing),
- constraints are all about the semantic equality of type expressions.

\section*{GADTS}
- How do GADTs generalize ADTS?
- at every level (instead of just at level *0)
- ranges are not restricted to distinct variables
- How are they declared?
- What kind of expressive power do they add?

\section*{ADT Declaration}
- Structures
- data Person = P Name Age Address
- Unions
- data Color = Red | Blue | Yellow
- Recursive
- data IntList = None
- | Add Int IntList
- Parameterized (polymorphic)
- data List a = Nil | Cons a (List a)

\section*{Algebraic Datatypes}
- Inductively formed structured data
- Generalizes enumerations, records \& tagged variants
- Well typed constructor functions are used to prevent the construction of ill-formed data.
- Pattern matching allows abstract high level (yet still efficient) access

\section*{ADTs provide abstract interface to data}
- Data Tree

We can define
parametric
Tree a polymorphic data
\(=\) Fork (Tree a) (Tree a)
| Node a

Inductively defined data allows structures of unbounded size
- Fork : : Tree a -> Tree a -> Tree a
- Node : : a \(->\) Tree a
- Tip : : Tree a

> Note the "data" declaration introduces values and functions that construct instances of the new type.

\section*{Deconstruction by pattern}


\section*{ADT Type Restrictions}
- Data Tree a
\(=\) Fork (Tree a) (Tree a)
| Node a
\(\mid\) Tip
- Fork :: Tree a -> Tree a -> Tree a
- Node : : a -> Tree a
- Tip : : Tree a

Restriction: the range of every constructor matches exactly the type being defined

\section*{GADTS at every level}
data Shape :: *1 where
Tp: : Shape
Nd: : Shape
Fk:: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that the GADT introduces its constructors.

Shape is a kind, Tp, Nd, and Fk are types

\section*{GADTs remove the range restriction}

- Instead of indicating the arity of a type constructor by naming its parameters, give an explicit kind
- Give the explicit type for every constructor to remove the range restriction.

\section*{Trees are indexed by Shape}

Tree : : Shape ~> *0 ~> *0 where
Tip: : Tree Tp a
Node: : a -> Tree Nd a
Fork: : Tree x a -> Tree y a -> Tree (Fk x y) a
-The kind index tells us about the shape of the tree. We can exploit this invariant
data Path:: Shape ~> *0 ~> *0 where
None : : Path Tp a
Here : : b -> Path Nd b
Left : : Path x a -> Path (Fk x y) a
Right: : Path y a -> Path (Fk x y) a

\section*{Function types tell us properties}
find:: (a -> a -> Boole) -> a
-> Tree sa
-> [Path sa]
find eq \(n\) Tip \(=\) []
find eq \(n(\) Node \(m\) ) \(=\)
if eq \(n \mathrm{~m}\) then [Here n ] else []
find eq \(n(\) Fork \(x y)=\)
map Left (find eq \(n \mathrm{x}\) ) ++ map Right (find eq \(n \mathrm{y}\) )

\section*{Curry-Howard isomorphism}
- The Curry-Howard isomorphism states that there is an isomorphism between
- programs/types
- and
- proofs/propositions
- What does this mean?
- How can we put this powerful idea to work in practical ways?

\section*{Curry-Howard}


\section*{Properties or Propositions}


\section*{Requirements for a legal proof}
- Even is always stacked above odd
- Odd is always stacked below even
-The numeral decreases by one in each stack
-Every stack ends with 0

\section*{Introduce data indexed by Nat}
data Even:: Nat ~> *0 where
Z:: Even 0
E: : Odd m -> Even (m+1)
data Odd:: Nat ~> *0 where
O: : Even m -> Odd (m+1)

Note the different range types! GADTS are essential here!

\section*{Properties as Functional Programs}


\section*{Relating functions \& witnesses}
data Proof:: Boolean ~> *0 where Triv:: Proof \(T\)

\section*{Singleton Types}
- GADTs allow us to reflect the structure of types as structure (data) at the value level
data Nat' : : Nat ~> *0 where


Because of this declaration \(\mathbf{z}\) and \(\mathbf{s}\) are added to the value name space.

\section*{Properties of Singleton Types}
- Only one element inhabits any singleton type.
- The shape of that value is in 1-to-1 correspondance with the type index of the type of that value
\(-S(S(S Z)):: ~ N a t '(S(S(S Z))\)
- If you know the type of a singleton, you know its shape.
- You can discover the type of a singleton value by exploring its shape.```

