
Christopher Dutchyn

University of Saskatchewan

Programming with Intent

Summer School
November 12, 2008

Summer School 2008

Quicksort
-- qsort :: int List -> int List

2

Summer School 2008

Quicksort
-- qsort :: int List -> int List

qsort lst = lst

3

Summer School 2008

Quicksort
-- qsort :: int List -> int List

-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]

4

Summer School 2008

Quicksort
-- qsort :: int List -> int List

-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]

qsort [1,2,3] = [1,2,3]
qsort [3,2,1] = [1,2,3]
qsort lst = lst

5

Summer School 2008

Quicksort
-- qsort :: int List -> int List

-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]

qsort [1,2,3] = [1,2,3]
qsort [3,2,1] = [1,2,3]
qsort _ lst = lst

• testing proves correctness at point level
– powerful but limited range

6

Can we do better?

Idea: lets use types to express
 programmer intent

Summer School 2008

Omega ≈ Haskell
• Additions

– Unbounded number of computational levels
• values (*0), types (*1), kind (*2), sorts (*3), …

– Data structures at all levels
– Generalized Algebraic Data Types (GADTs)
– Functions at all levels
– Staging

• Subtractions
– Type classes
– Laziness

8

Summer School 2008

Programming with Types✝

An object with structure at the type level

data Nat:: *1 where
 Z:: Nat
 S:: Nat ~> Nat the *1 means Nat is

a kind, and S and Z
yield types

✝with kudos to Stephanie Weirich

Summer School 2008

Kinds

Objects with Structure at the type Level

data Nat:: *1 where
 Z:: Nat
 S:: Nat ~> Nat

• A kind of natural numbers
– Classifies types Z, S Z, S (S Z)…
– Such types don’t classify values

*1 means a
kind

Z and S
are

types

Summer School 2008

5

Int

*0

*1

[5]

[Int]

*0

[]

*0 ~> *0

Succ

Nat ~>
Nat

Zero

Nat

*2

A hierarchy of
values, types, kinds,
sorts, …

values

types

kinds

sorts

Haskell

Summer School 2008

Example Kinds
data State:: *1 where

 Locked:: State

 Unlocked:: State

 Error:: State

data Color:: *1 where

 Red:: Color

 Black:: Color

Summer School 2008

More Examples
data Boolean:: *1 where

 T:: Boolean

 F:: Boolean

data Shape :: *1 where

 Tp:: Shape

 Nd:: Shape

 Fk:: Shape ~> Shape ~> Shape

Summer School 2008

 Type functions

plus :: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

Functions use pattern-matching
equations. Every type function

must have a prototype.

At the type level
and above we

surround
function

application with
braces.

At the type level
and above, type

constructor
application uses

juxatposition.

Summer School 2008

Functions over types
even :: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} = {even n}

Summer School 2008

More examples
and:: Boolean ~> Boolean ~> Boolean

{and T x} = x

{and F x} = F

Summer School 2008

Type level data structures

17

data LE :: Nat ~> Nat ~> *0 where
 Base_LE :: LE Z a
 Step_LE :: LE a b -> LE (S a) (S b)

Step_LE extends
this inductively to
cover all larger

successive cases

Base_LE witnesses that Z
(zero as a type-level

natural number) is known
to be less than any other
type-level natural number.

Summer School 2008

Relationships between types
le23 :: LE #2 #3

le23 = Step_LE (Step_LE Base_LE)

le2x :: LE #2 #(2+a)

le2x = Step_LE (Step_LE Base_LE)

Summer School 2008

Type Functions v.s. Witnesses

even:: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))}={even n}

le:: Nat ~> Nat

 ~> Boolean

{le Z n} = T

{le (S n) Z} = F

{le (S n) (S m)} =

 {le n m}

data Even:: Nat ~> *0
where

 EvenZ:: Even Z
 EvenSS:: Even n ->
 Even (S (S n))

data LE:: Nat ~> Nat ~> *0
where

 LeZ:: LE Z n
 LeS:: LE n m ->
 LE (S n) (S m)

Summer School 2008

Type indexed data

data BSeq :: Nat ~> Nat ~> *0 where

 Nil :: LE min max => BSeq min max

 Cons :: (LE min m, LE m max) =>

 Nat' m -> BSeq min max

 -> BSeq min max

LE automatically ensures the type-level
constants min and max satisfying
LE min m and LE m max exist

Explicitly classify both
BSeq, and its

constructor functions,
Nil and Cons, with

their full classification

*0 means BSeq is a type, and
Nil and Cons are values

Summer School 2008

Helper function

mapP :: (a -> b) -> (c -> d) -> (a+c) -> (b+d)

mapP f g (L x) = L (f x)

mapP f g (R x) = R (g x)

The + is the
disjoint union

Summer School 2008

Value-level fn typed by type-level fn

compare :: Nat' a -> Nat' b

 -> (LE a b + LE b a)

compare Z _ = L Base_LE

compare (S x) Z = R Base_LE

compare (S x) (S y) = mapP Step_LE

 Step_LE

 (compare x y)

Nat’ will be our value-level
data -- an actual natural

number.
Every natural number is
either <= or > another

natural number

Summer School 2008

Another Operation
qsplit :: (LE min piv, LE piv max) =>

 Nat' piv -> BSeq min max

 -> (BSeq min piv,

 BSeq piv max)

qsplit piv Nil = (Nil,Nil)

qsplit piv (Cons x xs) =

 case compare x piv of

 L p1 -> (Cons x small, large)

 R p1 -> (small, Cons x large)

 where (small,large) = qsplit piv xs

small and large
are only bounded,

not sorted.

Summer School 2008

A useful definition -- of a sorted list

data SL :: Nat ~> Nat ~> *0 where

 SNil :: SL x x

 SCons :: LE min min' =>

 Nat' min -> SL min' max

 -> SL min max

a sorted list between
min’ and max

a value (*0) less
than min’

a sorted list between min and max

Summer School 2008

Another utility -- appending sorted lists

app :: SL min piv -> SL piv max -> SL min max

app SNil ys = ys

app (SCons min xs) ys = SCons min (app xs ys)

sorting property is preserved

Summer School 2008

Using these Operations ...
qsort :: BSeq min max ->

 exists t . LE min t => SL t max

qsort Nil = Ex (SNil)

qsort (x @ (Cons pivot tail)) =

 (Ex (app smaller'

 (SCons pivot larger')))

 where (smaller,larger) = qsplit pivot tail

 (Ex (smaller')) = (qsort smaller)

 (Ex (larger')) = (qsort larger)

Ex is an anonymous
existential type

Summer School 2008

Ensuring Static Checking

27

prop LE :: Nat ~> Nat ~> *0 where
 Base_LE :: LE Z a
 Step_LE :: LE a b -> LE (S a) (S b)

Summer School 2008

Why Not Use C or Haskell?
• Most traditional languages like C don’t have strong type

systems that enforce the discipline necessary,

• Even in Haskell, we can’t create data structures whose
types can capture the types of Z, E, and O.
– GHC is adding this capability

• We can’t parameterize types (like Even and Odd) with
objects like Z and (S Z) since these are values not
types.
– GHC Type families are growing this capability

Summer School 2008

Summary
• Techniques exist for writing verified programs

– not just tested ... verified

– including compilers [Leroy, 2007]

• This is one approach
– extracting program from proof is another

• The future of programming is visible!
– proven programs

29

Summer School 2008

Acknowledgements
• thanks to Tim Sheard for gracious permission

to use parts of his Omega material

• Omega
– web.cecs.pdx.edu/~sheard/Omega/index.html

30

Yes! We Can!

And, it’s not that hard!

Summer School 2008

What Makes This Work
• type checking as computation

– closely related to typing as abstract interpretation
– cf. Cousot and Cousot

• guarded algebraic data types

• types as propositions / programs as proofs
– Curry Howard isomorphism

•

32

Summer School 2008

Type Checking
• Type checking is compile-time computation.

Γ |- f : c → d Γ |- x : b b ≅ c

 Γ |- f x : d

b ≅ c means b is mutually consistent

Summer School 2008

Mutually consistent
• Pascal

– b ≅ c means b and c are structurally equal

• Haskell
– b ≅ c means b and c unify

• Java
– b ≅ c means b is a subtype of c

• Dependent typing
– b ≅ c means b and c “mean the same thing”

Summer School 2008

Type Checking = CSP
• Every function leads to a set of constraints
• If the constraints have a solution, the function

is well typed.
• In Omega (as in dependent typing),

– constraints are all about the semantic equality of
type expressions.

Summer School 2008

GADTS
• How do GADTs generalize ADTS?

– at every level (instead of just at level *0)
– ranges are not restricted to distinct variables

• How are they declared?
• What kind of expressive power do they add?

Summer School 2008

ADT Declaration

• Structures
– data Person = P Name Age Address

• Unions
– data Color = Red | Blue | Yellow

• Recursive
– data IntList = None
– | Add Int IntList

• Parameterized (polymorphic)
– data List a = Nil | Cons a (List a)

Summer School 2008

Algebraic Datatypes
• Inductively formed structured data

– Generalizes enumerations, records & tagged
variants

• Well typed constructor functions are used to
prevent the construction of ill-formed data.

• Pattern matching allows abstract high level
(yet still efficient) access

Summer School 2008

ADTs provide abstract interface to data

• Data Tree a

 = Fork (Tree a) (Tree a)

 | Node a

 | Tip

• Fork :: Tree a -> Tree a -> Tree a

• Node :: a -> Tree a

• Tip :: Tree a
Note the “data” declaration
introduces values and functions
that construct instances of the new
type.

We can define
parametric

polymorphic data

Inductively defined
data allows structures

of unbounded size

Summer School 2008

Deconstruction by pattern

Fork

Fork Node
6

Tip Tip Sum :: Tree Int -> Int

Sum Tip = 0

Sum (Node x) = x

Sum (Fork m n) = sum m

 + sum n

We observe the tags by
using pattern matching

Constructors
are tags on

data

Summer School 2008

ADT Type Restrictions
• Data Tree a

 = Fork (Tree a) (Tree a)

 | Node a

 | Tip

• Fork :: Tree a -> Tree a -> Tree a

• Node :: a -> Tree a

• Tip :: Tree a
Restriction: the range of

every constructor
matches exactly the
type being defined

Summer School 2008

GADTS at every level
data Shape :: *1 where

 Tp:: Shape

 Nd:: Shape

 Fk:: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that the
GADT introduces its constructors.

Shape is a kind, Tp, Nd, and Fk are types

Summer School 2008

GADTs remove the range restriction

data Tree :: Shape ~> *0 ~> *0 where

 Tip:: Tree Tp a

 Node:: a -> Tree Nd a

 Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

• Instead of indicating the arity of a type constructor by naming
its parameters, give an explicit kind

• Give the explicit type for every constructor to remove the
range restriction.

Note the
different
range
types!

Summer School 2008

Trees are indexed by Shape

Tree :: Shape ~> *0 ~> *0 where

Tip:: Tree Tp a

 Node:: a -> Tree Nd a

 Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

•The kind index tells us about the shape of the tree. We can
exploit this invariant

data Path:: Shape ~> *0 ~> *0 where

 None :: Path Tp a

 Here :: b -> Path Nd b

 Left :: Path x a -> Path (Fk x y) a

 Right:: Path y a -> Path (Fk x y) a

Summer School 2008

Function types tell us properties
find:: (a -> a -> Bool) -> a

 -> Tree s a

 -> [Path s a]

find eq n Tip = []

find eq n (Node m) =

 if eq n m then [Here n] else []

find eq n (Fork x y) =

 map Left (find eq n x) ++

 map Right (find eq n y)

Summer School 2008

Curry-Howard isomorphism
• The Curry-Howard isomorphism states that

there is an isomorphism between
• programs/types

– and
• proofs/propositions

• What does this mean?
• How can we put this powerful idea to work in

practical ways?

Summer School 2008

Curry-Howard

O(E (O Z)) :: Odd (1+1+1+0)

program type

proof property

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Odd 3

What is a proof?

Summer School 2008

Properties or Propositions

3

Am I
odd or
even?

3 is odd, if
2 is even, if

1 is odd, if
 0 is even

Requirements for a legal proof
•Even is always stacked above odd

•Odd is always stacked below even

•The numeral decreases by one in each stack

•Every stack ends with 0

Summer School 2008

Introduce data indexed by Nat
data Even:: Nat ~> *0 where …

Z:: Even 0

E:: Odd m -> Even (m+1)

data Odd:: Nat ~> *0 where …

O:: Even m -> Odd (m+1)

Note the
different
range
types!

GADTS are
essential

here!

Summer School 2008

Properties as Functional Programs

data Even m = …

Z:: Even 0

E:: Odd m -> Even (m+1)

data Odd m = …

O:: Even m -> Odd (m+1)

O(E (O Z))

 :: Odd (1+1+1+0)

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Even and Odd type constructors,
Z,E, and O are data constructors
Observation: Proofs are Data!

Summer School 2008

Relating functions & witnesses
data Proof:: Boolean ~> *0 where

 Triv:: Proof T

Summer School 2008

Singleton Types
• GADTs allow us to reflect the structure of types

as structure (data) at the value level

data Nat’ :: Nat ~> *0 where

 Z :: Nat’ Z

 S :: Nat’ x -> Nat’ (S x)

Exploits the separation between the
value name space and the type

name space.
Because of this declaration Z and S
are added to the value name space.

Kinds Nat

Types (Nat’ Z)

Z

(S Z)

Values Z

(S Z)

Summer School 2008

Properties of Singleton Types
• Only one element inhabits any singleton type.
• The shape of that value is in 1-to-1 correspondance

with the type index of the type of that value
– S(S(S Z)) :: Nat’ (S(S(S Z))

• If you know the type of a singleton, you know its
shape.

• You can discover the type of a singleton value by
exploring its shape.

