Programming with Intent

Summer School November 12, 2008

Christopher Dutchyn

University of Saskatchewan

-- qsort :: int List -> int List


```
Quicksort
```

```
-- qsort :: int List -> int List
```

```
qsort lst = lst
```


- -- qsort :: int List -> int List
- -- tests!
- -- qsort [1,2,3] --> [1,2,3]
- -- qsort [3,2,1] --> [1,2,3]

-- qsort :: int List -> int List

```
-- tests!

-- qsort [1,2,3] --> [1,2,3]

-- qsort [3,2,1] --> [1,2,3]

qsort [1,2,3] = [1,2,3]

qsort [3,2,1] = [1,2,3]

qsort [3,2,1] = [1,2,3]

qsort lst = lst
```


-- qsort :: int List -> int List

```
-- tests!
```

```
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]
```

```
qsort [1,2,3] = [1,2,3]
qsort [3,2,1] = [1,2,3]
qsort _____lst = lst
```

 testing proves correctness at point level – powerful but limited range

Can we do better?

Idea: lets use types to express programmer intent

Omega ≈ Haskell

- Additions
 - Unbounded number of computational levels
 - values (*0), types (*1), kind (*2), sorts (*3), …
 - Data structures at all levels
 - Generalized Algebraic Data Types (GADTs)
 - Functions at all levels
 - Staging
- Subtractions
 - Type classes
 - Laziness

Example Kinds

data State:: *1 where

Locked:: State

Unlocked:: State

Error:: State

data Color:: *1 where

Red:: Color

Black:: Color

More Examples

data Boolean:: *1 where

- T:: Boolean
- F:: Boolean

data Shape :: *1 where

- Tp:: Shape
- Nd:: Shape
- Fk:: Shape ~> Shape ~> Shape


```
Functions over types
even :: Nat ~> Boolean
\{even Z\} = T
\{even (S Z)\} = F
\{even (S (S n))\} = \{even n\}
```


More examples

```
and:: Boolean ~> Boolean ~> Boolean
```

```
\{and T x\} = x
```

```
\{and F x\} = F
```


Type level data structures data LE :: Nat ~> Nat ~> *0 where Base LE :: LE Z a Step LE :: LE a b -> LE (S a) (S b) **Step LE** extends Base LE witnesses that Z this inductively to (zero as a type-level cover all larger natural number) is known successive cases to be less than any other type-level natural number.

Relationships between types

le23 :: LE #2 #3

le23 = Step_LE (Step_LE Base_LE)

le2x :: LE #2 #(2+a)

le2x = Step_LE (Step_LE Base_LE)

Type Functions v.s. Witnesses

even:: Nat ~> Boolean	<pre>data Even:: Nat ~> *0 where EvenZ:: Even Z</pre>
$\{even Z\} = T$	
$\{even (S Z)\} = F$	EvenSS:: Even n ->
$\{even (S (S n))\} = \{even n\}$	Even (S (S n))
le:: Nat ~> Nat	data LE:: Nat ~> Nat ~> *0
~> Boolean	where LeZ:: LE Z n LeS:: LE n m ->
$\{ le Z n \} = T$	
$\{ le (S n) Z \} = F$	LE (S n) (S m)
$\{ le (S n) (S m) \} =$	
{le n m}	
Summer School 2008	

Why Not Use C or Haskell?

- Most traditional languages like C don't have strong type systems that enforce the discipline necessary,
- Even in Haskell, we can't create data structures whose types can capture the types of z, E, and O.
 - GHC is adding this capability
- We can't parameterize types (like Even and Odd) with objects like z and (S Z) since these are values not types.
 - GHC Type families are growing this capability

Summary

- Techniques exist for writing verified programs

 not just tested ... verified
 - including compilers [Leroy, 2007]
- This is one approach

 extracting program from proof is another
- The future of programming is visible!
 proven programs

Acknowledgements

 thanks to Tim Sheard for gracious permission to use parts of his Omega material

- Omega
 - -web.cecs.pdx.edu/~sheard/Omega/index.html

Yes! We Can!

And, it's not that hard!

What Makes This Work

- type checking as computation

 closely related to typing as abstract interpretation
 cf. Cousot and Cousot
- guarded algebraic data types

types as propositions / programs as proofs
 – Curry Howard isomorphism

Type Checking

Type checking is compile-time computation.

$$\Gamma \mid -f: c \to d \qquad \Gamma \mid -x: b \qquad b \cong c$$
$$\Gamma \mid -f x: d$$

 $b \cong c$ means b is mutually consistent

Mutually consistent

- Pascal
 - b \cong c means b and c are structurally equal
- Haskell
 - b \cong c means b and c unify
- Java
 - $-b \cong c$ means b is a subtype of c
- Dependent typing
 - $-b \cong c$ means b and c "mean the same thing"

Type Checking = CSP

- Every function leads to a set of constraints
- If the constraints have a solution, the function is well typed.
- In Omega (as in dependent typing),
 - constraints are all about the semantic equality of type expressions.

GADTS

- How do GADTs generalize ADTS?

 at every level (instead of just at level *0)
 ranges are not restricted to distinct variables
- How are they declared?
- What kind of expressive power do they add?

ADT Declaration

```
    Structures

  - data Person = P Name Age Address

    Unions

  - data Color = Red | Blue | Yellow

    Recursive

  - data IntList = None
                   | Add Int IntList

    Parameterized (polymorphic)

  - data List a = Nil | Cons a (List a)
```


Algebraic Datatypes

- Inductively formed structured data
 Concretizes enumerations, records 8 to
 - Generalizes enumerations, records & tagged variants
- Well typed constructor functions are used to prevent the construction of ill-formed data.
- Pattern matching allows abstract high level (yet still efficient) access

ADT Type Restrictions

- Data Tree a
 - = Fork (Tree a) (Tree a)
 - | Node a
 - | Tip

- Fork :: Tree a -> Tree a -> Tree a
- Node :: a -> Tree a
- Tip :: Tree a

Restriction: the range of every constructor matches exactly the type being defined

GADTS at every level

data Shape :: *1 where

- Tp:: Shape
- Nd:: Shape
- Fk:: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that the GADT introduces its constructors.

Shape is a kind, Tp, Nd, and Fk are types

GADTs remove the range restriction

- Instead of indicating the arity of a type constructor by naming its parameters, give an explicit kind
- Give the explicit type for every constructor to remove the range restriction.

Trees are indexed by Shape

```
Tree :: Shape ~> *0 ~> *0 where
Tip:: Tree Tp a
  Node:: a \rightarrow Tree Nd a
  Fork:: Tree x a \rightarrow Tree y a \rightarrow Tree (Fk x y) a

    The kind index tells us about the shape of the tree. We can

  exploit this invariant
data Path:: Shape ~> *0 ~> *0 where
  None :: Path Tp a
  Here :: b \rightarrow Path Nd b
  Left :: Path x a \rightarrow Path (Fk x y) a
  Right:: Path y a \rightarrow Path (Fk x y) a
```


Function types tell us properties
find:: (a -> a -> Bool) -> a
-> Tree s a
-> [Path s a]
find eq n Tip = $[]$
find eq n (Node m) =
if eq n m then [Here n] else []
find eq n (Fork x y) =
<pre>map Left (find eq n x) ++</pre>
map Right (find eq n y)

Curry-Howard isomorphism

- The Curry-Howard isomorphism states that there is an isomorphism between
 - programs/types
 - and
 - proofs/propositions

- What does this mean?
- How can we put this powerful idea to work in practical ways?

Properties or Propositions

0 is even

1 is odd, if

2 is even, if

3 is odd, if

Requirements for a legal proof

•Even is always stacked above odd

•Odd is always stacked below even

- •The numeral decreases by one in each stack
- •Every stack ends with 0

Properties as Functional Programs

Z:: Even 0

E:: Odd $m \rightarrow Even (m+1)$

```
data Odd m = ...
```

O:: Even $m \rightarrow Odd (m+1)$

O(E (O Z))

:: Odd (1+1+1+0)

Even and **Odd** type constructors,

Z,**E**, and **O** are data constructors

Observation: Proofs are Data!

Relating functions & witnesses

data Proof:: Boolean ~> *0 where

Triv:: Proof T

Summer School 2008

Properties of Singleton Types

- Only one element inhabits any singleton type.
- The shape of that value is in 1-to-1 correspondance with the type index of the type of that value
 - S(S(S Z)) :: Nat' (S(S(S Z))
- If you know the type of a singleton, you know its shape.
- You can discover the type of a singleton value by exploring its shape.

