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Quicksort
-- qsort ::  int List -> int List
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Quicksort
-- qsort ::  int List -> int List

qsort lst = lst
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Quicksort
-- qsort ::  int List -> int List

-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]
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Quicksort
-- qsort ::  int List -> int List

-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]

qsort [1,2,3] = [1,2,3]
qsort [3,2,1] = [1,2,3]
qsort     lst = lst
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Quicksort
-- qsort ::  int List -> int List

-- tests!
-- qsort [1,2,3] --> [1,2,3]
-- qsort [3,2,1] --> [1,2,3]

qsort [1,2,3] = [1,2,3]
qsort [3,2,1] = [1,2,3]
qsort _   lst = lst

• testing proves correctness at point level
– powerful but limited range
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Can we do better?

Idea: lets use types to express
 programmer intent
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Omega ≈ Haskell
• Additions

– Unbounded number of computational levels
• values (*0), types (*1), kind (*2), sorts (*3), …

– Data structures at all levels 
– Generalized Algebraic Data Types (GADTs)
– Functions at all levels
– Staging

• Subtractions
– Type classes
– Laziness
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Programming with Types✝

An object with structure at the type level

data Nat:: *1 where
  Z:: Nat
  S:: Nat ~> Nat the *1 means Nat is 

a kind, and S and Z 
yield types

✝with kudos to Stephanie Weirich
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Kinds

Objects with Structure at the type Level

data Nat:: *1 where
  Z:: Nat
  S:: Nat ~> Nat

• A kind of natural numbers
– Classifies types Z,    S Z,     S (S Z)…
– Such types don’t classify values

*1 means a 
kind

Z and S 
are 

types
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Int

*0

*1

[5]

[ Int ]

*0

[ ]

*0 ~> *0

Succ

Nat ~> 
Nat

Zero

Nat

*2

A hierarchy of 
values, types, kinds, 
sorts, …

values

types

kinds

sorts

Haskell
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Example Kinds
data State:: *1   where

  Locked:: State

  Unlocked:: State

  Error:: State

data Color:: *1 where

  Red:: Color

  Black:: Color
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More Examples
data Boolean:: *1 where

  T:: Boolean

  F:: Boolean 

data Shape :: *1 where 

  Tp:: Shape

  Nd:: Shape

  Fk:: Shape ~> Shape ~> Shape
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                 Type functions 

plus :: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

Functions use pattern-matching 
equations.  Every type function 

must have a prototype.

At the type level 
and above we 

surround 
function 

application with 
braces.

At the type level 
and above, type 

constructor 
application uses 

juxatposition. 
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Functions over types
even :: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} = {even n}
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More examples
and:: Boolean ~> Boolean ~> Boolean

{and T x} = x

{and F x} = F
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Type level data structures
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data LE :: Nat ~> Nat ~> *0 where
    Base_LE :: LE Z a
    Step_LE :: LE a b -> LE (S a) (S b)

Step_LE extends 
this inductively to 
cover all larger 

successive cases

Base_LE witnesses that Z 
(zero as a  type-level 

natural number) is known 
to be less than any other 
type-level natural number. 
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Relationships between types
le23 :: LE #2 #3

le23 = Step_LE (Step_LE Base_LE)

le2x :: LE #2 #(2+a)

le2x = Step_LE (Step_LE Base_LE)
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Type Functions v.s. Witnesses

even:: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))}={even n}

le:: Nat ~> Nat 

     ~> Boolean 

{le Z n} = T

{le (S n) Z} = F

{le (S n) (S m)} = 

   {le n m}

data Even:: Nat ~> *0 
where

   EvenZ:: Even Z
   EvenSS:: Even n ->
            Even (S (S n))

data LE:: Nat ~> Nat ~> *0 
where

   LeZ:: LE Z n
   LeS:: LE n m -> 
         LE (S n) (S m)
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Type indexed data

data BSeq :: Nat ~> Nat ~> *0 where

     Nil :: LE min max => BSeq min max

     Cons :: (LE min m, LE m max) =>

                Nat' m -> BSeq min max

                       -> BSeq min max

LE automatically ensures the type-level 
constants min and max satisfying
LE min m and LE m max exist

Explicitly classify both 
BSeq, and its 

constructor functions, 
Nil and Cons, with 

their full classification

*0 means BSeq is a type, and 
Nil and Cons are values
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Helper function

mapP :: (a -> b) -> (c -> d) -> (a+c) -> (b+d)

mapP f g (L x) = L (f x)

mapP f g (R x) = R (g x)

The + is the 
disjoint union
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Value-level fn typed by type-level fn

compare :: Nat' a -> Nat' b

                  -> (LE a b + LE b a)

compare Z _ = L Base_LE

compare (S x) Z = R Base_LE

compare (S x) (S y) = mapP Step_LE

                           Step_LE

                           (compare x y)

Nat’ will be our value-level 
data -- an actual natural 

number.
Every natural number is 
either <= or > another 

natural number
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Another Operation
qsplit :: (LE min piv, LE piv max) =>

             Nat' piv -> BSeq min max

                      -> (BSeq min piv,

                          BSeq piv max)

qsplit piv Nil = (Nil,Nil)

qsplit piv (Cons x xs) =

    case compare x piv of

      L p1 -> (Cons x small, large)

      R p1 -> (small, Cons x large)

    where (small,large) = qsplit piv xs

small and large 
are only bounded, 

not sorted.
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A useful definition -- of a sorted list

data SL :: Nat ~> Nat ~> *0 where

  SNil :: SL x x

  SCons :: LE min min' =>

             Nat' min -> SL min' max

                      -> SL min max

a sorted list between 
min’ and max

a value (*0) less 
than min’

a sorted list between min and max
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Another utility -- appending sorted lists

app :: SL min piv -> SL piv max -> SL min max

app SNil ys = ys

app (SCons min xs) ys = SCons min (app xs ys)

sorting property is preserved
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Using these Operations ...
qsort :: BSeq min max -> 

              exists t . LE min t => SL t max

qsort Nil = Ex (SNil)

qsort (x @ (Cons pivot tail)) =

              (Ex (app smaller'

                       (SCons pivot larger')))

    where (smaller,larger) = qsplit pivot tail

          (Ex (smaller'))  = (qsort smaller)

          (Ex (larger'))   = (qsort larger)

Ex is an anonymous 
existential type
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Ensuring Static Checking
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prop LE :: Nat ~> Nat ~> *0 where
    Base_LE :: LE Z a
    Step_LE :: LE a b -> LE (S a) (S b)
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Why Not Use C or Haskell?
• Most traditional languages like C don’t have strong type 

systems that enforce the discipline necessary,

• Even in Haskell, we can’t create data structures whose 
types can capture the types of Z, E, and O.
– GHC is adding this capability

• We can’t parameterize types (like Even and Odd) with 
objects like Z and (S Z) since these are values not 
types.
– GHC Type families are growing this capability
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Summary
• Techniques exist for writing verified programs

– not just tested ... verified

– including compilers [Leroy, 2007]

• This is one approach
– extracting program from proof is another

• The future of programming is visible!
– proven programs
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Acknowledgements
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Yes! We Can!

And, it’s not that hard!
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What Makes This Work
• type checking as computation

– closely related to typing as abstract interpretation
– cf. Cousot and Cousot

• guarded algebraic data types

• types as propositions / programs as proofs
– Curry Howard isomorphism

•

32
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Type Checking
• Type checking  is  compile-time computation.

Γ |- f : c → d      Γ |- x : b    b ≅  c

              Γ |- f  x : d

b ≅  c   means  b is mutually consistent
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Mutually consistent
• Pascal

–   b ≅  c   means  b and  c  are structurally equal

• Haskell
–   b ≅  c   means  b and  c unify

• Java
– b ≅  c   means  b  is a subtype of  c

• Dependent typing
– b ≅  c   means  b and  c  “mean the same thing”



Summer School 2008

Type Checking = CSP
• Every function leads to a set of constraints
• If the constraints have a solution, the function 

is well typed.
• In Omega (as in dependent typing), 

– constraints are all about the semantic equality of 
type expressions.
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GADTS
• How do GADTs generalize ADTS?

– at every level (instead of just at level *0)
– ranges are not restricted to distinct variables

• How are they declared?
• What kind of expressive power do they add?
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ADT Declaration

• Structures
– data Person = P Name Age Address

• Unions
– data Color = Red | Blue | Yellow

• Recursive
– data IntList = None 
–              | Add Int IntList

• Parameterized (polymorphic)
– data List a = Nil | Cons a (List a)
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Algebraic Datatypes
• Inductively formed structured data

– Generalizes enumerations, records & tagged 
variants

• Well typed constructor functions are used to 
prevent the construction of ill-formed data.

• Pattern matching allows abstract high level 
(yet still efficient) access



Summer School 2008

ADTs provide abstract interface to data

• Data Tree a 

   = Fork (Tree a) (Tree a) 

   | Node a 

   | Tip

• Fork :: Tree a -> Tree a -> Tree a

• Node :: a -> Tree a

• Tip :: Tree a
Note the “data” declaration
introduces values and functions 
that construct instances of the new 
type.

We can define 
parametric 

polymorphic data

Inductively defined 
data allows structures 

of unbounded size
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Deconstruction by pattern 

Fork

Fork Node
6

Tip Tip Sum :: Tree Int -> Int

Sum Tip = 0

Sum (Node x) = x

Sum (Fork m n) = sum m

               + sum n

We observe the tags by 
using pattern matching

Constructors 
are tags on 

data
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ADT Type Restrictions
• Data Tree a 

   = Fork (Tree a) (Tree a) 

   | Node a 

   | Tip

• Fork :: Tree a -> Tree a -> Tree a

• Node :: a -> Tree a

• Tip :: Tree a
Restriction:  the range of 

every constructor 
matches exactly the 
type being defined
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GADTS at every level
data Shape :: *1 where 

  Tp:: Shape

  Nd:: Shape

  Fk:: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that the 
GADT introduces its constructors.

Shape is a kind, Tp, Nd, and Fk are types
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GADTs remove the range restriction 
 
data Tree :: Shape ~> *0 ~> *0 where

  Tip:: Tree Tp a

  Node:: a -> Tree Nd a

  Fork::  Tree x a -> Tree y a -> Tree (Fk x y) a

 

• Instead of indicating the arity of a type constructor by naming 
its parameters, give an explicit kind

• Give the explicit type for every constructor to remove the 
range restriction.

Note the 
different 
range 
types!
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Trees are indexed by Shape

Tree :: Shape ~> *0 ~> *0 where

Tip:: Tree Tp a

  Node:: a -> Tree Nd a

  Fork::  Tree x a -> Tree y a -> Tree (Fk x y) a

•The kind index tells us about the shape of the tree. We can 
exploit this invariant

data Path:: Shape ~> *0 ~> *0 where

  None :: Path Tp a

  Here :: b -> Path Nd b

  Left :: Path x a -> Path (Fk x y) a

  Right:: Path y a -> Path (Fk x y) a
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Function types tell us properties
find:: (a -> a -> Bool) -> a

                        -> Tree s a

                        -> [Path s a]

find eq n Tip = []

find eq n (Node m) =

  if eq n m then [Here n] else []

find eq n (Fork x y) = 

  map Left (find eq n x) ++ 

  map Right (find eq n y)
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Curry-Howard isomorphism
• The Curry-Howard isomorphism states that 

there is an isomorphism between
•  programs/types

–  and
•  proofs/propositions

• What does this mean?
• How can we put this powerful idea to work in 

practical ways?
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Curry-Howard

O(E (O Z))  :: Odd (1+1+1+0)

program type

proof property

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Odd 3

What is a proof?
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Properties or Propositions

3

Am I 
odd or 
even?

3 is odd,  if 
2 is even,  if 

1 is odd,  if 
 0 is even 

Requirements for a legal proof
•Even is always stacked above odd

•Odd is always stacked below even

•The numeral decreases by one in each stack

•Every stack ends with 0
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Introduce data indexed by Nat
data Even:: Nat ~> *0 where …

Z:: Even 0

E:: Odd m -> Even (m+1)

data Odd:: Nat ~> *0 where …

O:: Even m -> Odd (m+1)
 

Note the 
different 
range 
types! 

GADTS are 
essential 

here!
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Properties as Functional Programs

data Even m = …

Z:: Even 0

E:: Odd m -> Even (m+1)

data Odd m = …

O:: Even m -> Odd (m+1)

O(E (O Z)) 

   :: Odd (1+1+1+0)

O(E(O z)) :: Odd 3

E(O Z):: Even 2

O Z :: Odd 1

Z :: Even 0

Even and Odd type constructors, 
Z,E, and O are data constructors
Observation: Proofs are Data!
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Relating functions & witnesses
data Proof:: Boolean ~> *0 where

  Triv:: Proof T
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Singleton Types
• GADTs allow us to reflect the structure of types 

as structure (data) at the value level

data Nat’ :: Nat ~> *0 where

  Z :: Nat’ Z

  S :: Nat’ x -> Nat’ (S x)

Exploits the separation between the 
value name space and the type 

name space.
Because of this declaration Z and S 
are added to the value name space.

Kinds Nat

Types (Nat’ Z)

Z

(S Z)

Values Z

(S Z)
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Properties of Singleton Types
• Only one element inhabits any singleton type.
• The shape of that value is in 1-to-1 correspondance 

with the type index of the type of that value
– S(S(S Z)) :: Nat’ (S(S(S Z))

• If you know the type of a singleton, you know its 
shape.

• You can discover the type of a singleton value by 
exploring its shape.


