
Johan Fabry – AOSD

Aspect-Oriented Software Development
(AOSD)

Johan Fabry
jfabry@dcc.uchile.cl

With slides taken from
“Aspect-Oriented Software Development (AOSD) - An Introduction”

by
Johan Brichau & Theo D’Hondt

Johan Fabry - AOSD

Overview

• Introduction to AOSD

• Cross-Cutting Concerns

• Aspect = Pointcut + Advice

• Examples

• AOSD

• AspectJ Introduction

2

Technion
Israel

Aspect-Oriented
Software Development

(AOSD)
An Introduction

Johan Brichau & Theo DʼHondt
johan.brichau@vub.ac.be, tjdhondt@vub.ac.be

3

Need for adequate software engineering techniques

Software Engineering
Complexity

4

Functional Requirements

Software Development Requirements

Non-functional Requirements+
+

Complexity:=>

Separation of Concerns

5[E.W. Dijkstra]

Let
me try to explain to you, what to my

taste is characteristic for all intelligent thinking. It is,
that one is willing to study in depth an aspect of oneʼs

subject matter in isolation for the sake of its own consistency, all
the time knowing that one is occupying oneself only with one of the

aspects.

We know that a program must be correct and we can study it from that
viewpoint only; we also know that it should be efficient and we can study its
efficiency on another day […] But nothing is gained – on the contrary – by
tackling these various aspects simultaneously. It is what I sometimes have

called “the separation of concerns” […]

• Modular programming
–Organize code by grouping functionality

• Need for language mechanisms
–Drives evolution of languages & paradigms

Separation of Concerns

6

Concern: “Something the developer needs to care
about” (e.g. functionality, requirement,..)

Separation of concerns: handle each concern
separately

Crosscutting Concerns

7

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Concern Implementation

A Object 1
B Object 2
C Object 3
D Object 4
E Object 1,2,3

Typical examples: synchronisation, error handling, timing
constraints, user-interface, ...
Also concerns of a specific application, e.g.: login functionality in
webshop, business rules, ...

Crosscutting Concern Example

8

• Implementation of Apache Tomcat
webserver

• Analyzed implementation of 3 concerns:
–XML parsing concern
–URL pattern matching concern
–Logging concern

XML parsing concern

9

Good modularization
XML parsing is implemented in its own module

URL pattern matching concern

10

Good modularization
URL pattern matching is implemented in 2 modules

Logging concern

11

Bad modularization
logging is implemented in a lot of different places, spread throughout other modules

Crosscutting concerns

12

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

• Evolution ?
• Reuse ?
• Maintenance ?

Cumbersome!
It requires breaking all
modularisations that are
crosscut!

Need for better language /
better paradigm

Tyranny of the Dominant Decomposition

13

Given one out of many possible decompositions of the
problem... (mostly core functionality concerns)
 ...then some subproblems cannot be modularized!
 (non-functional, functional, added after the facts,...)

• Not only for a given decomposition
–But for all possible decompositions

• Not only in object-orientation!
–Also in other paradigms

• Not only in implementation!
–Also in analysis & design stages

• Modularize crosscutting concerns
– Code scattering (one concern in many modules)

– Code Tangling (one module, many concerns)

Aspectual Decomposition

14

Aspects

15

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Aspect

Implicit invocation

Implicit Invocation

16

TraceSupport TraceSupport

Aspect captures its own
invocation that crosscuts
other modules

Objects are invoked by
other objects through
message sends

Weavers
• Compilers (or interpreters) of an Aspect

Language
• ʻWeavesʼ the aspectʼs crosscutting code into

the other modules

17

Source-to-source transformations
Bytecode transformations

Reflection

Aspect-aware virtual machines

Aspects

18

Aspect

Aspect applicability code

Aspect functionality code

Control over implicit invocation

Aspect’s functional
implementation

Where / when

What

Pointcut

Advice

Joinpoints

19

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Aspect

joinpoint: ●

A join point is a point of
interest in some artefact
in the software lifecycle
through which two or
more concerns may be
composed.

Examples in implementation artefact:
- message sends
- method executions
- error throwing
- variable assignments
- ...

Join point Model

• Specific to each aspect-oriented
programming language

• E.g. AspectJ join point model:
key points in dynamic call graph

20

A join point model defines the kinds of join points
available and how they are accessed and used.

a Line

a Point

returning or
throwing

dispatch

dispatch

a method calla method execution

returning or throwing
a method execution

Pointcuts

21

A pointcut is a predicate that matches join points. A
pointcut is a relationship ʻjoin point -> booleanʼ, where
the domain of the relationship is all possible join
points.

Aspect

Aspect applicability code

Aspect functionality code

Pointcut

Advice

TraceSupport

Advice

22

Aspect

Aspect applicability code

Aspect functionality code

Pointcut

Advice

TraceSupport

Example: Synchronised buffer

23

Tangling!
Crosscutting concerns!

class Buffer {
 char[] data;
 int nrOfElements;
 Semaphore sema;

 bool isEmpty() {
 bool returnVal;
 sema.writeLock();
 returnVal := nrOfElements == 0;
 sema.unlock();
 return returnVal;
 }
}

Synchronisation concern

Buffer functionality concern

Synchronisation Concern

24

When a Buffer object receives the message isEmpty,
first make sure the object is not being accessed by
another thread through the get or put methods

Synchronisation as an Aspect

25

When a Buffer object receives the message isEmpty,
first make sure the object is not being accessed by
another thread through the get or put methods

When to execute the aspect (pointcut)
 Composition of when and what (kind of advice)
What to do at the join point (advice)

Synchronisation as an Aspect

26

class Buffer {
 char[] data;
 int nrOfElements;

 bool isEmpty() {
 bool returnVal;
 returnVal := nrOfElements == 0;
 return returnVal;
 }
}

before: reception(Buffer.isEmpty)
{ sema.writeLock();}

after: reception(Buffer.isEmpty)
{ sema.unlock(); }

Aspect

Pointcut

Advice

Other Examples
• Logging

“write something on the screen/file every time the
program does X”

• Error Handling
“if the program does X at join point L then do Y at join
point K”

• Persistence
“every time the program modifies the variable v in
class C, then dump a copy to the DB”

• User Interfaces
“every time the program changes its state, make
sure the change is reflected on the screen” 27

AOSD

28

Aspect-oriented...

... Requirements Engineering

... Design

... Architecture

... Programming

... Middleware

... Verification techniques

AO Programming

29

JAsCo, CaesarJ, AspectS, Object Teams, HyperJ, JBOSS
AOP, Compose*, DemeterJ, AspectC++, ...

• Aspect languages: aspectual language
features
–Advice models
–Join point models
–Pointcut languages

• Development support
–IDEʼs

30

EU Network on AOSD
http://www.aosd-europe.net

31

Johan Fabry - AOSD

AspectJ introduction

32

Johan Fabry - AOSD

Joinpoint Model

• Base language: Java

• Call & Exec of method or constructor

• Field get & set

• Exception handlers

• Initialization

• Lexical: all jp within a type or method

• Control flow: all jp within a control flow

33

Johan Fabry - AOSD

Joinpoint Model (II)

• Uses pattern matching

• Joinpoint considered dynamically

• Contains a dynamic context

• This example: only method call join points

34

Johan Fabry - AOSD

Example: Figure Editor

35

Johan Fabry - AOSD

Pointcuts

call(void Point.setX(int))

call(void Point.setX(int)) ||
call(void Point.setY(int))

call(void FigureElement.setXY(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

pointcut move():
 call(void FigureElement.setXY(int,int)) ||
 [...]

&& , || , !

36

Johan Fabry - AOSD

Pointcuts (II)

call(void Figure.make*(..))

call(public * Figure.* (..))

cflow(move())

37

Property-based
x-cutting

Dynamic Context

Johan Fabry - AOSD

Advice

before(): move() {
 System.out.println("about to move");
}

after() returning: move() {
 System.out.println("just successfully
moved");
}

after() throwing: move() {...}
after(): move() {...}

around(Foo f): pc (f) {
... Proceed(f); ...
}

38

Johan Fabry - AOSD

Advice & Context

pointcut setXY(FigureElement fe, int x, int y):
 call(void FigureElement.setXY(int, int))
 && target(fe) && args(x, y);

after(FigureElement fe, int x, int y) returning:
setXY(fe, x, y) {
 System.out.println(fe +" moved "+x+" "+y);}

39

this(Type or id)
target(Type or id)
args(Type or id)

Johan Fabry - AOSD

Advice & Context (II)

after(FigureElement fe, int x, int y) returning:
 call(void FigureElement.setXY(int, int))
 && target(fe) && args(x, y) {
 System.out.println(fe +" moved "+x+" "+y);}

40

Johan Fabry - AOSD

Aspects

aspect Logging {

 pointcut move():
 call(void FigureElement.setXY(int,int)) ||
 [...]

 before(): move() {
 logStream.println("about to move");
 }

}

41

Johan Fabry - AOSD

Inter-Type Declarations

aspect PointObserving {
 private Vector Point.observers
 = new Vector();

 public static void addObserver(Point p,
Screen s) { p.observers.add(s);}

 public static void removeObserver(Point p,
Screen s) { p.observers.remove(s);}

 pointcut changes(Point p): target(p) &&
call(void Point.set*(int));
...
}

42

Static mechanism

Questions?

