
Johan Fabry – DSAL

Domain-Specific Aspect Languages
(DSALs)

Johan Fabry
jfabry@dcc.uchile.cl

mailto:jfabry@dcc.uchile.cl
mailto:jfabry@dcc.uchile.cl

Johan Fabry - DSAL

Overview

• Reminder: Fundamental concepts of AOP

• Example: COOL

• What is a DSAL?

• Example: KALA

• Domain-Specific what?

• Example: AspectLISA

• Making a DSAL

2

Johan Fabry - DSAL

AOP Fundamentals

• Separation of concerns

• Joinpoint = point of composition of concerns

• Joinpoint model = kind, use, access of joinpoints

• Aspect

• pointcut = joinpoint predicate = where

• advice = functionality = what

• Most popular aspect language = AspectJ

• joinpoint model: methods, fields, exceptions

• pointcut: type/method/... patterns

• advice: +- standard Java

3

“mutual exclusion of threads, synchronization state,
guarded suspension and notification” [Lopes 97]

Johan Fabry - DSAL

COOL: another way to do aspects

4

62 CHAPTER 3. THE D FRAMEWORK

for a class to name a coordinator. The association between a class and a coordinator is driven by

the coordinator, not by the class.

At run-time, and by default, the association between objects and coordinators is one-to-one, and

it is called coordination “per object.” However, a coordinator may also be associated with all ob-

jects of one or more classes, and that is called coordination “per class.” A coordinator may be de-

clared per_class (§3.2.4.2) and must be declared per_class if it applies to more than one

class.

The body of a coordinator may have condition variable declarations (§3.2.4.4), ordinary vari-

able declarations (§3.2.4.5), one self-exclusion method set (§3.2.4.6), several mutual-exclusion

method sets (§3.2.4.7), and method managers (§3.2.4.8). The methods referred to in the coordina-

tor’s body must be valid methods of the coordinated classes.

The exclusion sets capture the strategies for mutual exclusion of threads over the execution of

the methods; these strategies are expressed in a declarative form. The condition variables capture

the synchronization state; synchronization actions, i.e., suspension and notification of threads, are

performed based on the synchronization state. Ordinary variables keep track of the rest the coordi-

nator’s state that doesn’t lead directly to synchronization actions, but that may affect the synchro-

nization state (typically, it is used for keeping track of method invocation histories). The method

managers operate on the coordinator’s variables (both condition and ordinary variables), declaring

pre-conditions and modifying the values of the coordinator’s variables. Changing the value of a

object

coordinator

m() {…}
1

2

3

4

5

6

7

8

1: Within thread T, there is a method invocation to method m of the

object, say obj.m()

2: The request is first presented to the object’s coordinator

3: The coordinator checks exclusion constraints and pre-conditions for

method m. If any of those constraints is not met, T is suspended.

When all constraints are met, T has the right to execute method m.

Just before it does so, the coordinator executes its on_entry

statements for method m.

4: The request proceeds to the object.

5: Thread T executes method m in the object.

6: As the method invocation returns, the return is presented to the

coordinator.

7: The coordinator executes its on_exit statements for method m.

8: The method invocation finally returns.

Figure 29. Protocol between an object and its coordinator.

Johan Fabry - DSAL

Bounded Buffer in COOL

coordinator BoundedBuffer {
 selfex put, take;
 mutex {put, take};
 condition empty = true, full = false;

 put: requires !full;
 on_exit {
 if(empty) empty = false;
 if(usedSlots == capacity) full = true;}
 take: requires !empty;
 on_exit {
 if (full) full = false;
 if (usedSlots == 0) empty = true;}
 }

5

Johan Fabry - DSAL

Per object / Per class coordinators

6

64 CHAPTER 3. THE D FRAMEWORK

instance

 ofinstance

 of

instance

 of

Rectangle

 (class)

r1 r2 r3

coordcoordcoord

coordinatescoordinatescoordinates

…

instance

 ofinstance

 of

instance

 of

Rectangle

 (class)

r1 r2 r3

coord

coordinates

…

instance

 ofinstance

 of

instance

 of

Rectangle

 (class)

r1 r2 r3

coord

coordinates

instance

 ofinstance

 of

instance

 of

Triangle

 (class)

t1 t2 t3… …

a) per_object coordination b) per_class coordination -- single class

c) per_class coordination – 2 classes

Figure 30. per_object and per_class coordination.

The Granularity of a coordinator defines whether it coordinates each instance of a class or en-

tire classes (see Figure 30). If the granularity qualifier is omitted, then it is assumed to be per ob-

ject, and only one class name must be specified (Figure 30.a). For example,

coordinator Rectangle { // declaration for Figure 30.a
 // coordinator body
}

In this case each instance has its own coordinator, with its own coordination state (§3.2.4.4,

§3.2.4.5); each of those coordinators uses the same coordination strategy — as defined in the coor-

dinator’s body.

If the coordinator is declared per_class, all instances of the coordinated classes that exist in

an execution space share the same coordinator. For example, the following declaration defines a

coordinator that is shared among all instances of class Rectangle (see Figure 30.b):

Johan Fabry - DSAL

Dining Philosophers in COOL

per_class coordinator Philosopher {
 condition OKToEat[]={true, true, true, true, true};
 boolean eating[]={false, false, false, false, false};
 eat: requires OKToEat[mynumber];
 on_entry {
 OKToEat[(mynumber+1) % max] = false;
 OKToEat[(mynumber-1) % max] = false;
 eating[mynumber] = true; }
 on_exit {
 if (eating[(mynumber+2) % max] == false)
 OKToEat[(mynumber+1) % max] = true;
 if (eating[(mynumber-2) % max] == false)
 OKToEat[(mynumber-1) % max] = true;
 eating[mynumber] = false; }
}

7

Johan Fabry - DSAL

What is a DSAL?

•Definition: “A DSAL is a DSL for expressing cross-
cutting concerns separately”

•“More formally: a DSL whose programs are not
functionally composed with other programs”

• DSAL vs DSL: Composition is essential in DSAL

• DSAL vs GPAL = DSL vs GPL

• Separation of concerns is the goal

8

Johan Fabry - DSAL

Advanced Transactions

• Transaction: Concurrency & failure management in
distributed systems

• ACID = Atomic, Consistent, Isolated, Durable

• Objects & Transactions:

• Method = transaction

• Data access within the scope of the transaction

• Advanced Transactions: go beyond the classical model

9

Johan Fabry - DSAL

KALA: DSAL for Advanced Transactions

• Transactions = classical AOP example

• Multiple implementations using AspectJ

• KALA: DSAL for Advanced Transactions [Fabry 05]

• Base: ACTA formal model [Chrysanthis 91]

• (Not all DSALS are for Concurrency!)

10

Johan Fabry - DSAL

KALA: DSAL for Advanced Transactions

11

util.strategy.Hierarchical.*(){
 alias(root Thread.currentThread());
 name(self Thread.currentThread());
 begin{
 dep(self wd root, root cd self);
 view(self root)}
 commit{ del(self root);
 name(root Thread.currentThread());
 terminate(self)}
 abort{
 name(root ...);
 terminate(self)}}

Johan Fabry - DSAL

KALA vs General-Purpose

12

Cashier.transfer
 (BankAccount from, BankAccount to , int amount) {
 alias (Saga Thread.currentThread());
 groupAdd(self ”StepOf”+Saga);}
 autostart (transfer(BankAccount, BankAccount, int)
 <dest, source, amount> {
 name(self "CompOf"+Saga);
 groupAdd(self "CompOf"+Saga);});
 begin {
 alias (Comp "CompOf"+Saga);
 dep(Saga ad self, self wd Saga, Comp bcd self); }
 commit {
 alias (Comp "CompOf"+Saga>);
 dep(Comp cmd Saga, Comp bad Saga); }}

Johan Fabry - DSAL

KALA vs general-purpose

13

 Forcing bf = txmgr.mayBegin(self);
 if (bf == null){
 Object preView = txmgr.lookupGroupBinding("RCS"+ RCS + "View");
 txmgr.begin(self);
 txmgr.removeViewGroup(RCS, preView);
 txmgr.delegate(RCS, self);
 }
 else {
 txmgr.rollback(self);
 return;
 }
 try {
 BankAccountWrap from = new BankAccountWrap(from_orig);
 BankAccountWrap to = new BankAccountWrap(to_orig);
 int from_amount = from.getAmount(self);
 int to_amount = to.getAmount(self);
 to.setAmount(to_amount + amount, self);
 from.setAmount(from_amount - amount, self);

 Forcing cf = txmgr.mayCommit(self);
 if (cf != null)
 throw new TxAbortedException();

 txmgr.addDependency(comp_id, "cmd" ,RCS);
 txmgr.addDependency(comp_id, "bad" ,RCS);

 txmgr.bindGroup("transferGroup","RCS"+ RCS + "View")
 Object newView = txmgr.lookupGroupBinding("RCS"+ RCS + "View");
 txmgr.addViewGroup(RCS, newView);
 txmgr.delegate(self, RCS);

 txmgr.commit(self);
 }
 catch (TxException ex){
 txmgr.mayAbort(self);//will always succeed
 txmgr.rollback(self);
 throw ex;
 }}

private void transfer
 (BankAccount from_orig, BankAccount to_orig, int amount)
 throws TxException
{
 TransactionManager txmgr = TransactionManager.getCurrent();
 Integer self = txmgr.newID();
 txmgr.addTransaction(self);
 Integer RCS = txmgr.lookup(Thread.currentThread());
 txmgr.addToGroup("RCS"+ RCS + "Step",self);

 final Integer comp_id = txmgr.newID(); //for compensation
 txmgr.addTransaction(comp_id);
 txmgr.addToGroup("RCS"+ comp_id+ "Comp",comp_id);
 txmgr.bind("RCS"+ comp_id+ "Comp",comp_id);

 final BankAccount compfrom = from_orig; //for inner class
 final BankAccount compto = to_orig; //for inner class
 final int compamount = amount; //for inner class

 Runnable compensator = new Runnable()
{
 public void run(){
 undoTransfer(compfrom, compto, compamount, comp_id);
 }
};
 txmgr.addDependency(RCS, "ad", self);
 txmgr.addDependency(self, "wd" ,RCS);
 txmgr.addDependency(comp_id, "bcd" ,self);

 new Thread(compensator).run();

Proceed()

Johan Fabry - DSAL

KALA advantages

•Separation of Concerns

•App logic: Java, Transactions: KALA

•High level of abstraction

•State transactional properties

•Conciseness

• Sagas: 267 lines pure Java = 37 Java + 52 KALA

• i.e. 3x code reduction

14

Johan Fabry - DSAL

Domain-Specific what?

• Joinpoint model? Pointcuts? Advice?

15

KALA COOL

Joinpoint Model Pointcut Advice

Domain-specific Domain-specific Domain-specific

Johan Fabry - DSAL

DSL as a base language : Aspect LISA

• LISA compiler compiler [Rebernak 06]
• Regular expressions, BNF, Attribute Grammars

16

Johan Fabry - DSAL

LISA: Example Robot language

17

language Robot {
lexicon {
 Commands left | right | up | down
 ReservedWord begin | end
 ignore [\0x0D\0x0A\] // skip whitespaces
}
rule start {
 START ::= begin COMMANDS end compute {
 START.outp = COMMANDS.outp; // robot position in the beginning
 COMMANDS.inp = new Point(0, 0); };
}
rule move { // each command changes one coordinate
 COMMAND ::= left compute {
 COMMAND.outp = new Point((COMMAND.inp).x-1,(COMMAND.inp).y); };
 COMMAND ::= right compute {
 COMMAND.outp = new Point((COMMAND.inp).x+1,(COMMAND.inp).y); };
 COMMAND ::= up compute {
 COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y+1); };
 COMMAND ::= down compute {
 COMMAND.outp = new Point((COMMAND.inp).x,(COMMAND.inp).y-1); };
} [...] }

Johan Fabry - DSAL

AspectLISA

• Joinpoint model

• Static

• Syntactic Production Rules | Generalized LISA Rules

• Pointcuts

• match terminal or non-terminal symbols

• ‘..’ = 0 or more symbols

• ‘*’ = (parts of) literals representing a symbol

18

Johan Fabry - DSAL

AspectLISA Example Pointcuts

pointcut *.* : * ::= .. ;
any production in any rule in all languages across the current
language hierarchy

pointcut Robot.m* : * ::= .. ;
any production in all rules which start with m in the Robot
language

pointcut Robot.move : COMMAND ::= left ;
matches only a production COMMAND ::= left in the rule
move of the Robot language

pointcut Time<COMMAND> *.move : COMMAND ::= *;
all productions in move with COMMAND as the left-hand non-
terminal

19

Johan Fabry - DSAL

AspectLISA Advice

• Parameterized semantic rules

• Written as native Java assignment statements

• Define additional semantics, not impacting structure/
syntax

• Adding COMMAND.time=1 to all productions within
move:

pointcut Time<COMMAND>*.move:COMMAND::= *;

advice TimeSemantics<C>

 on Time { C.time=1; }

20

Johan Fabry - DSAL

Domain-Specific what?

• Joinpoint model? Pointcuts? Advice?

21

KALA COOL

Name/att
filtering

Where vs
what

Joinpoint Model Pointcut Advice

Domain-specific Domain-specific Domain-specific

Johan Fabry - DSAL

Making a DSAL -- Implementation

• By hand: Parser + Weaver

• - Lots of work & hard

• + Total freedom

• Transform to AspectJ

• - Limited by AspectJ features

• + Communication, robustness

• DSAL weaving infrastructure, e.g. Reflex [Tanter 05]

• Best of both worlds?

22

Johan Fabry - DSAL

The Reflex Angle

• Combine the advantages of framework-based
approach with those of language-based approaches

• Extensible core: Reflex
• AOP kernel for Java based on reflective model

• Extensible syntax/assimilation:
• MetaBorg (SDF+Stratego) [Visser & Bravenboer]

23

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

Johan Fabry - DSAL

Making a DSAL -- Design

• Advice Specification ?

• Domain-Specific joinpoint model?

• What are the joinpoints?

• Static / dynamic?

• Granularity?

• Pointcut Specification?

• Context exposure ?

• Pointcut / Advice separation ?

• Aspect reuse ?

24

Johan Fabry - DSAL

Making a DSAL -- Challenges

• Analysis of the domain

• Methodology? (Ad-hoc)

• DSAL = DSL + crosscut specification

• Making the weaver

• Infrastructure, e.g. Reflex

• Reuse of language/weaver definitions

• Dependencies and Interactions of Aspects

• Various aspects in 1 application

• DSALs provide domain information

25

Questions?

