
Andy Kellens (akellens@vub.ac.be)

An introduction to
Logic Programming

mailto:akellens@vub.ac.be
mailto:akellens@vub.ac.be

An introduction to logic programming - PL 2008

In this lecture ...
‣ What is Logic Programming?

‣ A bit of history

‣ Facts and Rules

‣ Queries

‣ Unification

‣ Resolution of queries

‣ Negation as failure

‣ 8-queens problem

2

An introduction to logic programming - PL 2008

Logic Programming?
‣ Use of mathematical logic for programming

‣ Using logic as:

- representational language (data)

- procedural language (control)

‣ Declarative language

- Specify what, not how

3

If there is an emergency
then call the police

An introduction to logic programming - PL 2008

A bit of history ...
‣ Artificial Intelligence (1960’s, early 1970’s):

- Research about knowledge representation and inference

- Theorem-provers

- Problem-solvers

- Natural language processing

‣ Prolog (1972, Colmerauer)

- Dual declarative/procedural interpretation

- Turing complete programming language

- Focus of this lecture

‣ Many “flavours”:

- datalog

- forward chaining vs. backward chaining
4

An introduction to logic programming - PL 2008

An example: family tree

5

John

MaryPeterBob

TimKate

Jeff

SusanAlice

George

An introduction to logic programming - PL 2008

Facts and rules
‣ Logic programming is about relationships

‣ Two main concepts:

- Facts expressing your basic relationships

- Rules expressing derivable knowledge

‣ In our example:

- Facts: parent relationships, female/male

- Rules: brother, sister, grandparent, sibling, niece ...

6

An introduction to logic programming - PL 2008

Facts

7

male(john).
parent(john,bob).
parent(john,peter).
parent(john,mary).
female(mary).
parent(mary,kate).
parent(mary,tim).

An introduction to logic programming - PL 2008

Facts

7

male(john).
parent(john,bob).
parent(john,peter).
parent(john,mary).
female(mary).
parent(mary,kate).
parent(mary,tim).

parent(mary,tim).

Predicate
functor

Arity = 2 Constants

An introduction to logic programming - PL 2008

More structured data

8

data(john,
 name(smith,john),
 date(11,feb,1922))

functor
data

name datejohn

john smith 11 feb 1922

An introduction to logic programming - PL 2008

Rules

9

grandparent(Grandparent, Grandchild) :-
 parent(Grandparent, Parent),
 parent(Parent, Grandchild)

An introduction to logic programming - PL 2008

Rules

9

grandparent(Grandparent, Grandchild) :-
 parent(Grandparent, Parent),
 parent(Parent, Grandchild)

Conclusion

An introduction to logic programming - PL 2008

Rules

9

grandparent(Grandparent, Grandchild) :-
 parent(Grandparent, Parent),
 parent(Parent, Grandchild)

VariablesConclusion

An introduction to logic programming - PL 2008

Rules

9

grandparent(Grandparent, Grandchild) :-
 parent(Grandparent, Parent),
 parent(Parent, Grandchild)

Variables ifConclusion

An introduction to logic programming - PL 2008

Rules

9

grandparent(Grandparent, Grandchild) :-
 parent(Grandparent, Parent),
 parent(Parent, Grandchild)

Variables ifConclusion

Conditions

An introduction to logic programming - PL 2008

Rules

9

grandparent(Grandparent, Grandchild) :-
 parent(Grandparent, Parent),
 parent(Parent, Grandchild)

Variables ifConclusion

Conditions

and

An introduction to logic programming - PL 2008

Recursion

10

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

An introduction to logic programming - PL 2008

Recursion

10

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

An introduction to logic programming - PL 2008

Recursion

10

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

Is this rule complete?

An introduction to logic programming - PL 2008

Multiple rules for same predicate

11

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

An introduction to logic programming - PL 2008

Queries
‣ How to perform computations?

- By asking queries to the Prolog engine

‣ Is John the parent of Bob?

‣ Is Bob the father of Alice?

‣ Who is the father of Peter?

‣ Who are the grandchildren of John?

‣ Queries return either true/false, or a set of bindings
that are a valid result

12

An introduction to logic programming - PL 2008

Example queries (1)

13

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.6.62)
Copyright (c) 1990-2008 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

-? parent(john, bob).
true.

-? parent(john, kate).
false.

http://www.swi-prolog.org
http://www.swi-prolog.org

An introduction to logic programming - PL 2008

Queries (2)

14

-? parent(Parent, kate).
Parent = mary.

-? grandparent(john, Grandchild).
Grandchild = alice ;
Grandchild = susan ;
Grandchild = kate ;
Grandchild = tim.

An introduction to logic programming - PL 2008

Multi-way predicates (1)
‣ Same predicate can be used to verify relations or to

query relations

15

-? ancestor(john, kate).

-? ancestor(john, Who).
true.

Who = bob ;
Who = peter ;
Who = mary ;
Who = alice ;
Who = susan ;
Who = kate ;
Who = tim ;
Who = george ;
Who = jeff ;

An introduction to logic programming - PL 2008

Multi-way predicates (2)

16

-? ancestor(Ancestor, Child).
Ancestor = john,
Child = bob ;
Ancestor = john,
Child = peter ;
Ancestor = john,
Child = mary ;
Ancestor = bob,
Child = alice ;
Ancestor = peter,
Child = susan ;
Ancestor = mary,
Child = kate ;
Ancestor = mary,
Child = tim ;
....

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

Remember!

An introduction to logic programming - PL 2008

How does this work?
‣ No magic!

‣ Prolog = inference engine

‣ Two important concepts:

- Unification:
 match two different entities (=)
 bind variables

- Resolution:
 starting from a query (a goal)
 simplify this goal until we
 can find a matching basic fact
 or we can refute the goal.

17

An introduction to logic programming - PL 2008

Unification (1)
‣ In Prolog: unify two values using =

18

-? a = b.
false

-? a = a.
true

-? X = a.
X = a

Equality of two
constants

If a variable and a
constant; bind the
variable

An introduction to logic programming - PL 2008

Unification (2)

19

-? data(john,name(smith,john), date(11,feb,1922))
 = data(john, Name, Birthday).

Structural matchName = name(smith, john)
Birthday = date(11, feb, 1922)

-? data(Person,name(smith,john), Birthday)
 = data(john, Name, date(11,feb,1922).

Name = name(smith, john)
Birthday = date(11, feb, 1922)

Person = john

An introduction to logic programming - PL 2008

Unification (3)

20

-? X = Y, Y = a.
X = a
Y = a Unification with

variables-? X = Y, Z = Y

X = Z
Y = Z

-? X = a, X = b
false

Variables only bound
once!

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

Bindings

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

false

John is not the
 parent of Alice

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

?- parent(Parent, alice),

 ancestor(john, Parent)

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

false

John is not the
 parent of Alice

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

?- parent(Parent, alice),

 ancestor(john, Parent)

Parent = bob

?- ancestor(john, bob)

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

false

John is not the
 parent of Alice

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

?- parent(Parent, alice),

 ancestor(john, Parent)

Parent = bob

?- ancestor(john, bob)

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

false

John is not the
 parent of Alice ?- parent(john, bob)

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

?- parent(Parent, alice),

 ancestor(john, Parent)

Parent = bob

?- ancestor(john, bob)

true

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

false

John is not the
 parent of Alice ?- parent(john, bob)

An introduction to logic programming - PL 2008

Resolution
‣ How do queries work?

21

ancestor(Ancestor, Child) :-
 parent(Parent, Child),
 ancestor(Ancestor, Parent)

ancestor(Ancestor, Child) :-
 parent(Ancestor, Child)

� � � � � � 	 � � � � � � �
 � � � �
 � � 	 �

?- parent(Parent, alice),

 ancestor(john, Parent)

Parent = bob

?- ancestor(john, bob)

true

Bindings
Ancestor = john
Child = george

?- parent(john, alice)

false

John is not the
 parent of Alice ?- parent(john, bob)

... try second rule ...

false

An introduction to logic programming - PL 2008

Resolution (2)
‣ Start with the goal

‣ In order of definition:

- try each rule

- unify head of rule with goal

- try to solve the body of the rule (with substituted variables)

‣ Depth-first

- First try one branch in the tree until you encounter a failure or a
result

- If that happens: backtrack to next place where another option was
possible

‣ Keep solving until no more possibilities

22

An introduction to logic programming - PL 2008

Multiple results

23

?- ancestor(john, Who)

An introduction to logic programming - PL 2008

Multiple results

23

?- ancestor(john, Who)

Who = bob ;

true

An introduction to logic programming - PL 2008

Multiple results

23

?- ancestor(john, Who)

Who = bob ;

true

true

false

Who = alice ;

An introduction to logic programming - PL 2008

Multiple results

23

?- ancestor(john, Who)

Who = bob ;

true

true

false

Who = alice ;

Who = george ;

true

false

An introduction to logic programming - PL 2008

Multiple results

23

?- ancestor(john, Who)

Who = bob ;

true

true

false

Who = alice ;

Who = george ;

true

false

Who = ;

....

false

An introduction to logic programming - PL 2008

More Prolog: lists

24

[a, b, c, d, e, f]Example of a lists:
[]

[A | B]

Match first element

In a rule:
Match the rest

Applied to example:
 A = a
 B = [b, c, d, e, f]

An introduction to logic programming - PL 2008

Appending two lists

25

append([],List, List).

append([A | Rest], List, [A | Result]) :-
 append(Rest, List, Result)

An introduction to logic programming - PL 2008

Remember: multi-way!

26

?- append([1,2,3],[4,5],[1,2,3,4,5]).

?- append([1,2,3],[4,5],List).

?- append([1,2,3],List,[1,2,3,4,5]).

?- append(List,[4,5],[1,2,3,4,5]).

?- append(List1,List2,[1,2,3,4,5]).

An introduction to logic programming - PL 2008

Negation as failure
‣ Using not in rules and queries

‣ Try to prove the negated goal

- if success -> then fail

- if fail -> then success

‣ Closed-world assumption

- what is not known to be true, is false

27

bachelor(Person) :-
 male(Person),
 not(married(Person)

male(henry).
male(tom).

married(tom).

An introduction to logic programming - PL 2008

Negation (2)

28

bachelor(Person) :-
 male(Person),
 not(married(Person)

male(henry).
male(tom).

married(tom).

?- bachelor(henry).
yes
?- bachelor(tom).
no
?- bachelor(Who).
Who= henry;

?- not(married(Who))
no

An introduction to logic programming - PL 2008

Negation (2)

28

bachelor(Person) :-
 male(Person),
 not(married(Person)

male(henry).
male(tom).

married(tom).

?- bachelor(henry).
yes
?- bachelor(tom).
no
?- bachelor(Who).
Who= henry;

?- not(married(Who))
no

Why?

An introduction to logic programming - PL 2008

8-queens problem

29

Place 8 queens on a
chess board.

They should not be
able to attack each
other.

An introduction to logic programming - PL 2008

8-queens problem in Prolog

30

solutiontemplate([
 pos(1,Y1),
 pos(2,Y2),
 pos(3,Y3),
 pos(4,Y4),
 pos(5,Y5),
 pos(6,Y6),
 pos(7,Y7),
 pos(8,Y8)]).

Template for reporting
the solution.

Given the column,
calculate the row.

An introduction to logic programming - PL 2008

8-queens problem in Prolog (2)

31

solution8queens([]).
solution8queens([pos(X,Y) | Others]) :-
	 solution8queens(Others),
	 member(Y, [1,2,3,4,5,6,7,8]),
	 doesnotattack(pos(X,Y), Others).

Solve the problem
recursively. Try all possible Y

positions.
Verify if it is a valid
position.

An introduction to logic programming - PL 2008

8-queens problem in Prolog (3)

32

doesnotattack(pos(X,Y), []).
doesnotattack(pos(X,Y), [pos(X1,Y1) | Others]) :-
	 not(Y = Y1),
	 not(Y1 - Y = X1 - X),
	 not(Y1 - Y = X - X1),
	 doesnotattack(pos(X,Y), Others).

Valid if it does not
attack any queen in the
list of positions.

An introduction to logic programming - PL 2008

8-queens problem in Prolog (4)

33

?- solutiontemplate(S), solution8queens(S).
S = [pos(1, 7), pos(2, 8), pos(3, 5), pos(4, 6), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 5), pos(2, 8), pos(3, 7), pos(4, 6), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 7), pos(2, 5), pos(3, 8), pos(4, 6), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 6), pos(2, 8), pos(3, 5), pos(4, 7), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 6), pos(2, 5), pos(3, 8), pos(4, 7), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 5), pos(2, 6), pos(3, 8), pos(4, 7), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 7), pos(2, 6), pos(3, 5), pos(4, 8), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 6), pos(2, 5), pos(3, 7), pos(4, 8), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 5), pos(2, 6), pos(3, 7), pos(4, 8), pos(5, 4), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 7), pos(2, 8), pos(3, 4), pos(4, 6), pos(5, 5), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 4), pos(2, 8), pos(3, 7), pos(4, 6), pos(5, 5), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 7), pos(2, 4), pos(3, 8), pos(4, 6), pos(5, 5), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 6), pos(2, 8), pos(3, 4), pos(4, 7), pos(5, 5), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 6), pos(2, 4), pos(3, 8), pos(4, 7), pos(5, 5), pos(6, 3), pos(7, 2), pos(8, 1)] ;
S = [pos(1, 4), pos(2, 6), pos(3, 8), pos(4, 7), pos(5, 5), pos(6, 3), pos(7, 2), pos(8, 1)] ;
........

An introduction to logic programming - PL 2008

To conclude
‣ Logic programming

- logic + control

- unification/resolution

- specify what you want, not how to calculate it!

‣ Only scratched the surface

- Formal foundations

- More language features (cut, meta programming, ...)

‣ Lots of information out there!

34

An introduction to logic programming - PL 2008

Free book!

35

