
Aspects, Processes, and Components

PL 2008 - Punta Arenas
Aspects, Processes, and Components

Jacques Noyé
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Introduction

The basic idea

There is usually no specific support for concurrency in AOP
languages.

Both (regular) stateful aspects and processes can be
represented as automata.

What about modelling both the base program and aspects as
automata and combine stateful aspects and concurrency
(between base and aspects as well as between aspects).

May such a model be used to synthesize aspects and facilitate
reuse?
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Introduction

Stateful Aspects [DFS02, DFS04]

Standard aspects are stateless, they deal with a unique atomic
action (a join point):

if pointcut(join point) eval(advice);

Stateful aspects may affect the execution of the base
program, depending on the state of the program, ie depending
on the previous execution.

if pointcut1(join point) eval(advice1);
if pointcut2(join point) eval(advice2);
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A Naive Example

Base Model

Server = Session =
( login -> Session ( checkout -> Server
| update -> Server | update -> Session
), | browse -> Session

).
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A Naive Example

Aspect

Event-Based AOP (EAOP) [DFS02].

µa.
(
login; µa′.

(
(update � skip; log; a′) 2 (checkout; a)

))
Consistency = Session =
( login -> Session ( update -> skip -> log -> Session
), | checkout -> Consistency

).
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A Naive Example

Woven Model

||S = (Server || Consistency).

Problems:

We want to execute update out of a session

We don’t want to update within a session
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Solution

Instrumentation of Base

We are interested in the event “an update is about to take
place” in order to execute a before advice.
When “an update is about to take place” an aspect interested
in updates should be able to decide whether the action should
take place or not.

Server =
( login -> Session
| bUpdate -> ( skip -> Server

| proceed -> update -> Server
)

),
Session =
( checkout -> Server
| bUpdate -> ( skip -> Session

| proceed -> update -> Session
)

| browse -> Session
).
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Solution

Adding Waiting Loops to Aspects

All the actions shared between the base and the aspect:
{login, bUpdate, checkout} must be dealt with in each
aspect state. Some actions are skippable (the aspect may
decide not to execute them), others are not skippable.

Consistency =
( login -> Session
| bUpdate -> proceed -> Consistency
| checkout -> Consistency
),

Session =
( bUpdate -> skip -> log -> Session
| checkout -> Consistency
| login -> Session
).
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Solution

Woven Model
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Controlling Concurrency

Composing Base and Aspect

Controlling Concurrency Between Base and Aspect

We introduce pairs of instrumentation events (beginEvent,
endEvent):

bUpdate ->
( bSkip -> eSkip -> eUpdate -> Server
| bProceed -> update -> eProceed -> eUpdate -> Server
)

Base

Aspect

sequential flow

bEvent eEventeSkipbSkip

bEvent bSkip eSkip after 
actions eEventbefore 

actions
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Controlling Concurrency

Composing Base and Aspect

Controlling Concurrency Between Base and Aspect (2)

Base

Aspect

sequential flow

bEvent eEventeSkipbSkip

bEvent bSkip eSkip after 
actions eEventbefore 

actions

||ConcurrentConsistency = (Consistency)\{eUpdate}.

Base

Aspect

concurrent flow

bEvent eEventeSkipbSkip

bEvent bSkip eSkip after 
actions

before 
actions
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Controlling Concurrency

Composing Base and Aspect

Summary

Input:

a base program modelled as an FSP B
a stateful aspect A expressed in an extended version of FSP:

Consistency = Session =
( login -> Session ( update > skip , log -> Session
), | checkout -> Consistency

).

Output (the weaving of A into B):
BaseTransf(B) || hiding(AspectTransf(A))

The transformations are independent from the composition.

Hiding controls concurrency between the base and the aspect.
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Controlling Concurrency

Composing Aspects

Composing Aspects - Basic Idea

Abstract point of view: the aspects are composed via
operators

Example: Fun(Consistency, Safety) with

Safety
∆
= µa′′.(update � rehash proceed backup; a′′)

An operator is modelled as the composition of a specific FSP
with a proper renaming.
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Controlling Concurrency

Composing Aspects

The Fun Operator

Fun(Aspect1, Aspect2) is the “functional” sequential
composition (used in AspectJ) of Aspect1 and Aspect2.

bEvent eEventeventbProceed

bEvent bProceed eProceed eEvent

Base

Aspect1

bEvent bProceed eProceed eEvent

bProceed1 eProceed1

Aspect2

eProceed

Control flow

renaming
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Controlling Concurrency

Composing Aspects

The Fun Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1
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Controlling Concurrency

Composing Aspects

The Fun Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1
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Controlling Concurrency

Composing Aspects

The Fun Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1
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Controlling Concurrency

Composing Aspects

The ParAnd Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

ParAnd =    (skip1 -> (skip2 -> skip -> ParAnd
               | proceed2 -> skip -> ParAnd
| proceed1 -> ( skip2 -> skip -> ParAnd

                                       | proceed2 -> proceed -> ParAnd)).

skip1 skip2

proceed1 proceed2
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Implementation

Baton

Prototype: Baton [NN07a]

The base program is instrumented with AspectJ-like pointcuts
describing the actions of interest (using Reflex [TTPN08]).

The previous transformations are used to generate the aspects
(as active objects) from a concrete syntax close to FSP (using
Metaborg/SDF).

Calls to a global monitor are used to synchronize the shared
actions:

two synchronization barriers per transition!
naive but guarantees correction wrt the model
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Implementation

Baton

Aspect

aspect Consistency {
public void log(Client client, Admin admin) {
System.out.println(admin + " skipped:"

+ client + " is connected.");
}
behaviour {
Server = ( login(Client client) -> InSession(client) ),
InSession(client) =
( update(Admin admin) > skip, log(client,admin)

-> InSession(client)
| checkout(client) -> Server ).

}
}
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Implementation

Baton

Connector

connector ClientConnector{
connect login(Client c) :
execution(* Client.login(..)) && this(c);

connect checkout(Client c) :
execution(* Client.checkout(..)) && this(c);

}
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Implementation

Baton

Main Program

main Ecommerce{
Aspect aspect = new ParAnd(new Consistency(), new Safety());
Client client = new Client();
Admin admin = new Admin();
Connector clientCon = new ClientConnector();
Connector adminCon = new AdminConnector();
Baton.connect(aspect,clientCon,client);
Baton.connect(aspect,adminCon,admin);
Baton.start();

}
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Implementation

Components and Aspects

Prototype Components/Aspects [NN07b]

The base program is structured as components with interfaces
specifying the provided and required services, as well as the
published events (these are kinds of open modules [Ald05]).

Published events look very much like required services, but
their connection is optional.

The aspect protocols are also associated to interfaces
specifying the expected events (and their property skippable
or not) as well as the required services.

An application composed of components and aspects is
transformed/compiled into a component-based application.
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Conclusion

Concurrent Event-Based AOP (CEAOP)

A formal model of concurrent stateful aspects [DLBNS06].

Transformation semantics (translation into pure FSP).
The base as well as the aspects can be concurrent.
Composition operators are used to coordinate the aspects and
the base program.

Prototype implementations (extensions of Java).

The aspects can be reused in various compositions.

Clarifies the relationship between stateful aspects and process
calculi.
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Conclusion

Current work

These ideas are currently integrated into a new version of
CaesarJ [AGMO06]:

Extended advice language

Processes are class members and can be redefined or extended
in superclasses, and composed using mixin composition
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Rémi Douence, Pascal Fradet, and Mario Südholt.
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Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario
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Angel Núñez and Jacques Noyé.
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