
Aspects, Processes, and Components

PL 2008 - Punta Arenas
Aspects, Processes, and Components

Jacques Noyé
OBASCO - Ecole des Mines de Nantes/INRIA, LINA

Jacques.Noye@emn.fr

12 November 2008

Aspects, Processes, and Components

Introduction

The basic idea

There is usually no specific support for concurrency in AOP
languages.

Both (regular) stateful aspects and processes can be
represented as automata.

What about modelling both the base program and aspects as
automata and combine stateful aspects and concurrency
(between base and aspects as well as between aspects).

May such a model be used to synthesize aspects and facilitate
reuse?

Aspects, Processes, and Components

Introduction

Stateful Aspects [DFS02, DFS04]

Standard aspects are stateless, they deal with a unique atomic
action (a join point):

if pointcut(join point) eval(advice);

Stateful aspects may affect the execution of the base
program, depending on the state of the program, ie depending
on the previous execution.

if pointcut1(join point) eval(advice1);
if pointcut2(join point) eval(advice2);

Aspects, Processes, and Components

A Naive Example

Base Model

Server = Session =
(login -> Session (checkout -> Server
| update -> Server | update -> Session
), | browse -> Session

).

Aspects, Processes, and Components

A Naive Example

Aspect

Event-Based AOP (EAOP) [DFS02].

µa.
(
login; µa′.

(
(update � skip; log; a′) 2 (checkout; a)

))
Consistency = Session =
(login -> Session (update -> skip -> log -> Session
), | checkout -> Consistency

).

Aspects, Processes, and Components

A Naive Example

Woven Model

||S = (Server || Consistency).

Problems:

We want to execute update out of a session

We don’t want to update within a session

Aspects, Processes, and Components

Solution

Instrumentation of Base

We are interested in the event “an update is about to take
place” in order to execute a before advice.
When “an update is about to take place” an aspect interested
in updates should be able to decide whether the action should
take place or not.

Server =
(login -> Session
| bUpdate -> (skip -> Server

| proceed -> update -> Server
)

),
Session =
(checkout -> Server
| bUpdate -> (skip -> Session

| proceed -> update -> Session
)

| browse -> Session
).

Aspects, Processes, and Components

Solution

Adding Waiting Loops to Aspects

All the actions shared between the base and the aspect:
{login, bUpdate, checkout} must be dealt with in each
aspect state. Some actions are skippable (the aspect may
decide not to execute them), others are not skippable.

Consistency =
(login -> Session
| bUpdate -> proceed -> Consistency
| checkout -> Consistency
),

Session =
(bUpdate -> skip -> log -> Session
| checkout -> Consistency
| login -> Session
).

Aspects, Processes, and Components

Solution

Woven Model

Aspects, Processes, and Components

Controlling Concurrency

Composing Base and Aspect

Controlling Concurrency Between Base and Aspect

We introduce pairs of instrumentation events (beginEvent,
endEvent):

bUpdate ->
(bSkip -> eSkip -> eUpdate -> Server
| bProceed -> update -> eProceed -> eUpdate -> Server
)

Base

Aspect

sequential flow

bEvent eEventeSkipbSkip

bEvent bSkip eSkip after
actions eEventbefore

actions

Aspects, Processes, and Components

Controlling Concurrency

Composing Base and Aspect

Controlling Concurrency Between Base and Aspect (2)

Base

Aspect

sequential flow

bEvent eEventeSkipbSkip

bEvent bSkip eSkip after
actions eEventbefore

actions

||ConcurrentConsistency = (Consistency)\{eUpdate}.

Base

Aspect

concurrent flow

bEvent eEventeSkipbSkip

bEvent bSkip eSkip after
actions

before
actions

Aspects, Processes, and Components

Controlling Concurrency

Composing Base and Aspect

Summary

Input:

a base program modelled as an FSP B
a stateful aspect A expressed in an extended version of FSP:

Consistency = Session =
(login -> Session (update > skip , log -> Session
), | checkout -> Consistency

).

Output (the weaving of A into B):
BaseTransf(B) || hiding(AspectTransf(A))

The transformations are independent from the composition.

Hiding controls concurrency between the base and the aspect.

Aspects, Processes, and Components

Controlling Concurrency

Composing Aspects

Composing Aspects - Basic Idea

Abstract point of view: the aspects are composed via
operators

Example: Fun(Consistency, Safety) with

Safety
∆
= µa′′.(update � rehash proceed backup; a′′)

An operator is modelled as the composition of a specific FSP
with a proper renaming.

Aspects, Processes, and Components

Controlling Concurrency

Composing Aspects

The Fun Operator

Fun(Aspect1, Aspect2) is the “functional” sequential
composition (used in AspectJ) of Aspect1 and Aspect2.

bEvent eEventeventbProceed

bEvent bProceed eProceed eEvent

Base

Aspect1

bEvent bProceed eProceed eEvent

bProceed1 eProceed1

Aspect2

eProceed

Control flow

renaming

Aspects, Processes, and Components

Controlling Concurrency

Composing Aspects

The Fun Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1

Aspects, Processes, and Components

Controlling Concurrency

Composing Aspects

The Fun Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1

Aspects, Processes, and Components

Controlling Concurrency

Composing Aspects

The Fun Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1

Aspects, Processes, and Components

Controlling Concurrency

Composing Aspects

The ParAnd Operator - Simplified Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

ParAnd = (skip1 -> (skip2 -> skip -> ParAnd
 | proceed2 -> skip -> ParAnd
| proceed1 -> (skip2 -> skip -> ParAnd

 | proceed2 -> proceed -> ParAnd)).

skip1 skip2

proceed1 proceed2

Aspects, Processes, and Components

Implementation

Baton

Prototype: Baton [NN07a]

The base program is instrumented with AspectJ-like pointcuts
describing the actions of interest (using Reflex [TTPN08]).

The previous transformations are used to generate the aspects
(as active objects) from a concrete syntax close to FSP (using
Metaborg/SDF).

Calls to a global monitor are used to synchronize the shared
actions:

two synchronization barriers per transition!
naive but guarantees correction wrt the model

Aspects, Processes, and Components

Implementation

Baton

Aspect

aspect Consistency {
public void log(Client client, Admin admin) {
System.out.println(admin + " skipped:"

+ client + " is connected.");
}
behaviour {
Server = (login(Client client) -> InSession(client)),
InSession(client) =
(update(Admin admin) > skip, log(client,admin)

-> InSession(client)
| checkout(client) -> Server).

}
}

Aspects, Processes, and Components

Implementation

Baton

Connector

connector ClientConnector{
connect login(Client c) :
execution(* Client.login(..)) && this(c);

connect checkout(Client c) :
execution(* Client.checkout(..)) && this(c);

}

Aspects, Processes, and Components

Implementation

Baton

Main Program

main Ecommerce{
Aspect aspect = new ParAnd(new Consistency(), new Safety());
Client client = new Client();
Admin admin = new Admin();
Connector clientCon = new ClientConnector();
Connector adminCon = new AdminConnector();
Baton.connect(aspect,clientCon,client);
Baton.connect(aspect,adminCon,admin);
Baton.start();

}

Aspects, Processes, and Components

Implementation

Components and Aspects

Prototype Components/Aspects [NN07b]

The base program is structured as components with interfaces
specifying the provided and required services, as well as the
published events (these are kinds of open modules [Ald05]).

Published events look very much like required services, but
their connection is optional.

The aspect protocols are also associated to interfaces
specifying the expected events (and their property skippable
or not) as well as the required services.

An application composed of components and aspects is
transformed/compiled into a component-based application.

Aspects, Processes, and Components

Conclusion

Concurrent Event-Based AOP (CEAOP)

A formal model of concurrent stateful aspects [DLBNS06].

Transformation semantics (translation into pure FSP).
The base as well as the aspects can be concurrent.
Composition operators are used to coordinate the aspects and
the base program.

Prototype implementations (extensions of Java).

The aspects can be reused in various compositions.

Clarifies the relationship between stateful aspects and process
calculi.

Aspects, Processes, and Components

Conclusion

Current work

These ideas are currently integrated into a new version of
CaesarJ [AGMO06]:

Extended advice language

Processes are class members and can be redefined or extended
in superclasses, and composed using mixin composition

Aspects, Processes, and Components

Conclusion

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus
Ostermann.
An overview of CaesarJ.
In Transactions on Aspect-Oriented Software Development I,
volume 3880 of Lecture Notes in Computer Science, pages
135–173. Springer-Verlag, February 2006.

Jonathan Aldrich.
Open modules: Modular reasoning about advice.
In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, volume 3586 of
Lecture Notes in Computer Science, pages 144–168, Glasgow,
UK, July 2005. Springer-Verlag.

Rémi Douence, Pascal Fradet, and Mario Südholt.
A framework for the detection and resolution of aspect
interactions.

Aspects, Processes, and Components

Conclusion

In Don Batory, Charles Consel, and Walid Taha, editors,
Generative Programming and Component Engineering: ACM
SIGPLAN/SIGSOFT Conference, GPCE 2002 - Proceedings,
volume 2487 of Lecture Notes in Computer Science, pages
173–188, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

Rémi Douence, Pascal Fradet, and Mario Südholt.
Composition, reuse and interaction analysis of stateful aspects.

In Karl Lieberherr, editor, Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD
2004), pages 141–150, Lancaster, UK, March 2004. ACM
Press.

Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario
Südholt.
Concurrent aspects.
In Proceedings of the 4th International Conference on
Generative Programming and Component Engineering

Aspects, Processes, and Components

Conclusion

(GPCE’06), pages 79–88, Portland, USA, October 2006. ACM
Press.

Angel Núñez and Jacques Noyé.
A domain-specific language for coordinating concurrent
aspects in java.
In Rémi Douence et Pascal Fradet, editor, 3ème Journée
Francophone sur le Développement de Logiciels Par Aspects
(JFDLPA 2007), Toulouse, France, March 2007.

Angel Núñez and Jacques Noyé.
A seamless extension of components with aspects using
protocols.
In Ralf Reussner, Clemens Szyperski, and Wolfgang Weck,
editors, WCOP 2007 - Components beyond Reuse - 12th
International ECOOP Workshop on Component-Oriented
Programming, Berlin, Germany, July 2007.

Aspects, Processes, and Components

Conclusion

Éric Tanter, Rodolfo Toledo, Guillaume Pothier, and Jacques
Noyé.
Flexible metaprogramming and AOP in Java.
Science of Computer Programming, 72(1-2):22–30, 2008.
Special issue on Experimental Software and Toolkits.

	Introduction
	A Naive Example
	Solution
	Controlling Concurrency
	Composing Base and Aspect
	Composing Aspects

	Implementation
	Baton
	Components and Aspects

	Conclusion

