
Process Calculi

PL 2008 - Punta Arenas
A (Gentle?) Introduction to Process Calculi

Jacques Noyé
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Process Calculi

Introduction

Process Calculi

A family of approaches to formally model concurrent systems:
interaction, communication, and synchronization between
independent processes (or agents).

Algebraic laws make it possible to manipulate and reason
about these models (in particular in terms of their behavioral
equivalence).
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Introduction

The Agenda

FSP (Finite State Processes) [MK06]

Processes are modelled graphically by labelled transitions
systems (LTS) and textually by FSP
LTSA (Labelled Transition System Analyzer) translates FSPs
into LTSs and provides model animation and model checking
of safety and liveness properties.

Communicating automata (revised version of CCS - a Calculus
of Communicating Systems)

The π-calculus [MPW92, Mil93, Mil99]

The asynchronous π-calculus [HT91]
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Modelling Sequential Processes

Modelling Sequential Processes with LTSs

Modelling Sequential Processes with LTSs

A (sequential) process is the execution of a sequential program. It
is modeled as a finite state machine which transits from state to
state by executing a sequence of atomic actions. [MK06]

The corresponding sequence of actions (there is only one) or trace:

on -> off -> on -> off -> on -> off ...
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Modelling Sequential Processes

Modelling Sequential Processes with LTSs

Example 2 - Several Traces

blue -> tea -> blue -> tea -> blue -> tea ...
red -> coffee -> blue -> tea -> blue -> tea ...
...
red -> coffee -> red -> coffee -> red -> coffee ...
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Modelling Sequential Processes

Modelling Sequential Processes with LTSs

Example 3 - Nondeterministic

toss -> tails -> toss -> tails -> toss -> tails ...
toss -> heads -> toss -> tails -> toss -> tails ...
...
toss -> heads -> toss -> heads -> toss -> heads ...
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Modelling Sequential Processes

Modelling Sequential Processes with FSPs

(Basic) FSP Syntax

ProcessDefinition ::= ProcessName = ProcessExpression

ProcessExpression ::= ProcessName | ActionPrefix | Choice

ActionPrefix ::= ( Action -> ProcessExpression )

Choice ::= ( Action -> ProcessExpression
| Action -> ProcessExpression )
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Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Recursive Definitions and Action Prefixes

SWITCH = OFF, OFF = (on -> ON), ON = (off-> OFF).

or

SWITCH = OFF, OFF = (on -> (off -> OFF)).
SWITCH = (on -> off -> SWITCH). % -> is right-associative
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Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Choices

DRINKS = ( red -> coffee -> DRINKS
| blue -> tea -> DRINKS
).
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Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Syntactic Sugar: Indexed Actions

BUFF = (write[i:0..3]->read[i]-> BUFF).

is equivalent to:

BUFF = ( write[0]->read[0]->BUFF
| write[1]->read[1]->BUFF
| write[2]->read[2]->BUFF
| write[3]->read[3]->BUFF
).

Note: | is commutative and associative.
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Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Syntactic Sugar: Indexed Processes

range R = 0..1
BUFF = BUFF[0],
BUFF[old:R] = ( read[old] -> BUFF[old]

| write[new:R] -> BUFF[new]).

is equivalent to:

BUFF = BUFF[0],
BUFF[0] = ( read[0] -> BUFF[0]

| write[0] -> BUFF[0]
| write[1] -> BUFF[1]),

BUFF[1] = ( read[1] -> BUFF[1]
| write[0] -> BUFF[0]
| write[1] -> BUFF[1]).
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Modelling Sequential Processes

Semantics

LTS

Definition

A (finite) LTS is a quadruple < S ,A,∆, q > where:

S is a finite set of states

A is the alphabet of the LTS (a set of labels)

∆ ⊆ (S × A× S) is the transition relation of LTS

q is the initial state of the LTS.

That is, a nondeterministic automaton without accepting states.

Definition

An LTS L =< S ,A,∆, q > transits with action a ∈ A into and
LTS L′, L

a→L′ if: P ′ =< S ,A,∆, q′ >, where (q, a, q′) ∈ ∆.
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Modelling Sequential Processes

Semantics

Association Rules

The semantics is given by associating an LTS to each process
expression: lts : ProcessExpression → LTS

P = E
Definition

lts(P) = lts(E )

lts(E ) =< S ,A,∆, q >
Prefix

lts(a → E ) =< S ∪ {p},A ∪ {a},∆ ∪ {(p, a, q)}, p > where p /∈ S

lts(E1) =< S1,A1,∆1, q1 > lts(E2) =< S2,A2,∆2, q2 >
Choice

lts(a1 → E1 | a2 → E2) = < S ∪ {p},A1 ∪ A2 ∪ {a1, a2},
∆ ∪ {(p, a1, q1), (p, a2, q2)}, p >
where p /∈ S
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Parallel Composition

Parallel Composition

Parallel composition construct: (ProcessName || ProcessName)

P = ...
Q = ...
||PQ = (P || Q).

Note: in FSP, it is not possible to mix the definition of sequential
processes and parallel processes.
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Parallel Composition

Semantics

There is a new association rule for parallel composition:

ParallelComposition
lts(P || Q) = lts(P) || lts(Q)

This requires to define the parallel composition of LTSs.
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Parallel Composition

Composing LTSs

Let us consider L1 =< S1,A1,∆1, q1 > and
L2 =< S2,A2,∆2, q2 >.
L1 || L2 =< S1 × S2,A1 ∪ A2,∆, (q1, q2) >, where ∆ is the
smallest relation satisfying the following rules:

L1
a→ L′1 a /∈ A2

L1 || L2
a→ L′1 || L2

L2
a→ L′2 a /∈ A1

L1 || L2
a→ L1 || L′2

L1
a→ L′1 L2

a→ L′2 a ∈ A1 ∪ A2, it is a shared action
L1 || L2

a→ L′1 || L′2



Process Calculi

Parallel Composition

Algebraic laws

|| is commutative: P||Q = Q||P
|| is associative: (P||Q)||R = P||(Q||R)

This gives n-ary synchronization on shared actions.
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Parallel Composition

A structural/component view of composition

The alphabet of a process is its interface, its definition is its
implementation.

RESOURCE = (acquire->release->RESOURCE).
USER = (acquire->use->release->USER).
||S = (USER || RESOURCE).

USER

acquire

release

RESOURCE

acquire

release

use S
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Parallel Composition

Hiding actions

||S = (USER || RESOURCE)\{acquire, release}.

USER

acquire

release

RESOURCE

acquire

release

use S

This creates τ transitions in the underlying LTS.
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Parallel Composition

Relabeling actions

RESOURCE = (lock->unlock->RESOURCE).
USER = (acquire->use->release->USER).
||S = (USER || RESOURCE)/{acquire/lock, release/unlock}.

USER

acquire

release

RESOURCE

lock

unlock

use S

acquire

release
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Parallel Composition

Relabeling processes

All the transitions of a sequential process can be prefixed (eg to
create some kind of “instances”).

RESOURCE = (lock->unlock->RESOURCE).
USER = (acquire->use->release->USER).
||S = (a:USER || b:USER || RESOURCE).
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Parallel Composition

Set prefixing

Instead of a single prefix, a set can be used. This creates a process
that is not structurally equivalent to the initial one.

RESOURCE = (lock->unlock->RESOURCE).
USER = (acquire->use->release->USER).
||S = (a:USER || b:USER || {a,b}::RESOURCE).
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Parallel Composition

A quick demo?
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Variants

Communicating Automata

Communicating Automata [Mil99]

Binary synchronization through complementary actions a and
a

Lean syntax

Semantics given by either:

Transition rules
Reaction rules (à la Chemical Abstract Machine)
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Variants

Communicating Automata

Syntax

There is no layering of sequential and parallel processes

Processes are parameterized by their actions (relabeling)

new restricts the scope of an action (hiding)

D ::= A(−→a ) = PA

P ::= A〈−→a 〉 |
∑

i∈I αi .Pi | P1|P2 | new a P
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Variants

Communicating Automata

Labelled Semantics

Sumt
M + α.P + N

α→P

P
λ→P ′ Q

λ→Q ′
Reactt

P | Q τ→P ′ | Q ′

P
α→P ′

L-Part
P | Q α→P ′ | Q

Q
α→Q ′

R-Part
P | Q α→P | Q ′

P
α→P ′

Rest if α /∈ {a, a}
new a P

α→new a P ′

{
−→
b /−→a }PA

α→P ′
Identt if A(−→a ) = PA

A <
−→
b >

α→P ′
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Variants

Communicating Automata

Semantics - Structural Congruence

Definition

Two processes P and Q are structurally congruent, P ≡ Q, if they
are identical up to structure. Structural congruence is the least
equivalence relation preserved by the process constructs and the
following rules:

P ≡ Q modulo alpha-conversion of bound variables (new)

P ≡ Q modulo reordering choices

P ≡ Q modulo reordering parallel composition (including P | 0 ≡ P)

restrictions

new a (P|Q) ≡ P|new a Q if a is not free in P
new a 0 ≡ 0
new a (new b P) ≡ new b (new a P)

A <
−→
b >≡ {

−→
b /−→a }PA if A(−→a ) = PA
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Variants

Communicating Automata

Semantics - Reaction Rules

Tau
τ.P + M → P

React
(a.P + M)|(a.Q + N) → P|Q

P → P ′
Par

P|Q → P ′|Q

P → P ′
Res

new a P → new a P ′

P → P ′
Struct if P ≡ Q and P ′ ≡ Q ′

Q → Q ′
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Variants

Communicating Automata

Example [Mil99]

Let us consider P = new a((a.Q1 + b.Q2) | a) | (b.R1 + a.R2).

React
(a.Q1 + b.Q2) | a.0→ Q1 | 0

Struct
(a.Q1 + b.Q2) | a → Q1

Res
new a ((a.Q1 + b.Q2) | a) → new a Q1

Par
new a ((a.Q1 + b.Q2) | a) | (b.R1 + a.R2) → new a Q1 | (b.R1 + a.R2)
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Variants

Communicating Automata
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Variants

Communicating Automata

Example [Mil99]
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Variants

Communicating Automata

Example [Mil99]

Let us consider P = new a((a.Q1 + b.Q2) | a) | (b.R1 + a.R2).

React
(a.Q1 + b.Q2) | a.0→ Q1 | 0

Struct
(a.Q1 + b.Q2) | a → Q1

Res
new a ((a.Q1 + b.Q2) | a) → new a Q1

Par
new a ((a.Q1 + b.Q2) | a) | (b.R1 + a.R2) → new a Q1 | (b.R1 + a.R2)
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Variants

Communicating Automata

Linking both semantics

Theorem

Reaction agrees with τ -transition: P
τ→≡ P ′ if and only if P → P ′
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Variants

Communicating Automata

Bisimulation

Definition

A binary relation R over processes is a strong simulation if,
whenever P R Q:

if P
α→P ′, then there exists Q ′ such that Q

α→Q ′ and P ′ R Q ′.

Intuition: P “simulates” Q, it is able to “follow” its transitions.

Definition

A strong bisimulation R is a simulation whose converse relation
R−1 is also a simulation.

Example: Structural congruence is a strong bisimulation.
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Variants

Communicating Automata

Weak Bisimulation

The definition of weak bisimulation is essentially the same as
that of strong simulation except that the transition relation is
replaced by a relation which makes it possible to ignore
internal τ actions.

A process can be replaced by a process which behaves
equivalently up to observable actions.
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Variants

The π-calculus

The π-calculus [Mil99]

Actions are not only used to synchronize processes, they are also
used as channels of communication, communicating values that are
themselves channels:

The structure of the system is dynamic.

The expressive power is completely different: for instance, it is
possible to encode the λ-calculus.
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Variants

The π-calculus

Syntax

π ::= x(y) receive y along x
| x(y) send y along x
| τ unobservable action

P ::=
∑

i∈I πi .Pi | P1|P2 | new x P | !P

Mutually recursive definitions are replaced by repetition (in the
basic π-calculus): !P ≡ P|!P.
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Variants

The π-calculus

Semantics (Reaction Rules)

Tau
τ.P + M → P

React
(x(y).P + M)|(x(z).Q + N) → {z/y}P|Q

P → P ′
Par

P|Q → P ′|Q

P → P ′
Res

new a P → new a P ′

P → P ′
Struct if P≡Q and P ′≡Q ′

Q → Q ′
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Variants

The Asynchronous π-calculus

The Asynchronous π-calculus

The asynchronous π-calculus is defined as a subset of the
π-calculus where:

There is no output prefixing (a process may only output a
value and stop).

There is no output in choices (in order to avoid
synchronization, in particular in a distributed setting, at the
implementation level).

It is “almost” as expressive as the π-calculus.
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Variants

The Asynchronous π-calculus

Example: the join-calculus [FG96, FG02]

Syntax

P ::= x〈u〉 message send
| P1|P2 parallel composition
| def x(u)|y(v) . P1 in P2

A process and its channels are jointly defined in a construct
that looks like a function definition (the scope of u and v is
P1, the scope of x and y the whole definition).

Informal semantics: the reception of a message on both u and
v (join pattern) spawns a process P1 and proceeds with P2.
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Conclusion

Some other interesting topics

Higher-order vs first-order process calculi (it is possible to send
process expressions rather than simply names over channels)

Reconciling the actor model [HBS73, Agh86] and process
calculi [AT04]

The ambient calculus [CG98] (the focus is on movement
rather than communication)
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Conclusion

Current Research

Developping new calculi that better capture (some aspects of)
computation

Improving the capabilities for reasoning on processes:

“Well-behaved” subcalculi (with stronger properties)
Behavioral theory
Specific logics

Understanding the relative expressivity of process calculi
(using encodings)
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Conclusion

What can we do with all this?

Analysis: extract the behavior of an existing system and
analyze its properties.

Synthesis (model-driven development): model new systems
and derive their implementation (with an objective of
correction by construction)

Program language design: improve current support for
concurrency; reduce the gap between the models and the
implementation. Examples:

Pict [PT97], based on the π-calculus
JoCaml [MM07] (http://jocaml.inria.fr/)
Cω (http://research.microsoft.com/Comega/)
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