
Process Calculi

PL 2008 - Punta Arenas
A (Gentle?) Introduction to Process Calculi

Jacques Noyé
OBASCO - Ecole des Mines de Nantes/INRIA, LINA

Jacques.Noye@emn.fr

11-12 November 2008

Process Calculi

Introduction

Process Calculi

A family of approaches to formally model concurrent systems:
interaction, communication, and synchronization between
independent processes (or agents).

Algebraic laws make it possible to manipulate and reason
about these models (in particular in terms of their behavioral
equivalence).

Process Calculi

Introduction

The Agenda

FSP (Finite State Processes) [MK06]

Processes are modelled graphically by labelled transitions
systems (LTS) and textually by FSP
LTSA (Labelled Transition System Analyzer) translates FSPs
into LTSs and provides model animation and model checking
of safety and liveness properties.

Communicating automata (revised version of CCS - a Calculus
of Communicating Systems)

The π-calculus [MPW92, Mil93, Mil99]

The asynchronous π-calculus [HT91]

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with LTSs

Modelling Sequential Processes with LTSs

A (sequential) process is the execution of a sequential program. It
is modeled as a finite state machine which transits from state to
state by executing a sequence of atomic actions. [MK06]

The corresponding sequence of actions (there is only one) or trace:

on -> off -> on -> off -> on -> off ...

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with LTSs

Example 2 - Several Traces

blue -> tea -> blue -> tea -> blue -> tea ...
red -> coffee -> blue -> tea -> blue -> tea ...
...
red -> coffee -> red -> coffee -> red -> coffee ...

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with LTSs

Example 3 - Nondeterministic

toss -> tails -> toss -> tails -> toss -> tails ...
toss -> heads -> toss -> tails -> toss -> tails ...
...
toss -> heads -> toss -> heads -> toss -> heads ...

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with FSPs

(Basic) FSP Syntax

ProcessDefinition ::= ProcessName = ProcessExpression

ProcessExpression ::= ProcessName | ActionPrefix | Choice

ActionPrefix ::= (Action -> ProcessExpression)

Choice ::= (Action -> ProcessExpression
| Action -> ProcessExpression)

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Recursive Definitions and Action Prefixes

SWITCH = OFF, OFF = (on -> ON), ON = (off-> OFF).

or

SWITCH = OFF, OFF = (on -> (off -> OFF)).
SWITCH = (on -> off -> SWITCH). % -> is right-associative

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Choices

DRINKS = (red -> coffee -> DRINKS
| blue -> tea -> DRINKS
).

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Syntactic Sugar: Indexed Actions

BUFF = (write[i:0..3]->read[i]-> BUFF).

is equivalent to:

BUFF = (write[0]->read[0]->BUFF
| write[1]->read[1]->BUFF
| write[2]->read[2]->BUFF
| write[3]->read[3]->BUFF
).

Note: | is commutative and associative.

Process Calculi

Modelling Sequential Processes

Modelling Sequential Processes with FSPs

Syntactic Sugar: Indexed Processes

range R = 0..1
BUFF = BUFF[0],
BUFF[old:R] = (read[old] -> BUFF[old]

| write[new:R] -> BUFF[new]).

is equivalent to:

BUFF = BUFF[0],
BUFF[0] = (read[0] -> BUFF[0]

| write[0] -> BUFF[0]
| write[1] -> BUFF[1]),

BUFF[1] = (read[1] -> BUFF[1]
| write[0] -> BUFF[0]
| write[1] -> BUFF[1]).

Process Calculi

Modelling Sequential Processes

Semantics

LTS

Definition

A (finite) LTS is a quadruple < S ,A,∆, q > where:

S is a finite set of states

A is the alphabet of the LTS (a set of labels)

∆ ⊆ (S × A× S) is the transition relation of LTS

q is the initial state of the LTS.

That is, a nondeterministic automaton without accepting states.

Definition

An LTS L =< S ,A,∆, q > transits with action a ∈ A into and
LTS L′, L

a→L′ if: P ′ =< S ,A,∆, q′ >, where (q, a, q′) ∈ ∆.

Process Calculi

Modelling Sequential Processes

Semantics

Association Rules

The semantics is given by associating an LTS to each process
expression: lts : ProcessExpression → LTS

P = E
Definition

lts(P) = lts(E)

lts(E) =< S ,A,∆, q >
Prefix

lts(a → E) =< S ∪ {p},A ∪ {a},∆ ∪ {(p, a, q)}, p > where p /∈ S

lts(E1) =< S1,A1,∆1, q1 > lts(E2) =< S2,A2,∆2, q2 >
Choice

lts(a1 → E1 | a2 → E2) = < S ∪ {p},A1 ∪ A2 ∪ {a1, a2},
∆ ∪ {(p, a1, q1), (p, a2, q2)}, p >
where p /∈ S

Process Calculi

Parallel Composition

Parallel Composition

Parallel composition construct: (ProcessName || ProcessName)

P = ...
Q = ...
||PQ = (P || Q).

Note: in FSP, it is not possible to mix the definition of sequential
processes and parallel processes.

Process Calculi

Parallel Composition

Semantics

There is a new association rule for parallel composition:

ParallelComposition
lts(P || Q) = lts(P) || lts(Q)

This requires to define the parallel composition of LTSs.

Process Calculi

Parallel Composition

Composing LTSs

Let us consider L1 =< S1,A1,∆1, q1 > and
L2 =< S2,A2,∆2, q2 >.
L1 || L2 =< S1 × S2,A1 ∪ A2,∆, (q1, q2) >, where ∆ is the
smallest relation satisfying the following rules:

L1
a→ L′1 a /∈ A2

L1 || L2
a→ L′1 || L2

L2
a→ L′2 a /∈ A1

L1 || L2
a→ L1 || L′2

L1
a→ L′1 L2

a→ L′2 a ∈ A1 ∪ A2, it is a shared action
L1 || L2

a→ L′1 || L′2

Process Calculi

Parallel Composition

Algebraic laws

|| is commutative: P||Q = Q||P
|| is associative: (P||Q)||R = P||(Q||R)

This gives n-ary synchronization on shared actions.

Process Calculi

Parallel Composition

A structural/component view of composition

The alphabet of a process is its interface, its definition is its
implementation.

RESOURCE = (acquire->release->RESOURCE).
USER = (acquire->use->release->USER).
||S = (USER || RESOURCE).

USER

acquire

release

RESOURCE

acquire

release

use S

Process Calculi

Parallel Composition

Hiding actions

||S = (USER || RESOURCE)\{acquire, release}.

USER

acquire

release

RESOURCE

acquire

release

use S

This creates τ transitions in the underlying LTS.

Process Calculi

Parallel Composition

Relabeling actions

RESOURCE = (lock->unlock->RESOURCE).
USER = (acquire->use->release->USER).
||S = (USER || RESOURCE)/{acquire/lock, release/unlock}.

USER

acquire

release

RESOURCE

lock

unlock

use S

acquire

release

Process Calculi

Parallel Composition

Relabeling processes

All the transitions of a sequential process can be prefixed (eg to
create some kind of “instances”).

RESOURCE = (lock->unlock->RESOURCE).
USER = (acquire->use->release->USER).
||S = (a:USER || b:USER || RESOURCE).

Process Calculi

Parallel Composition

Set prefixing

Instead of a single prefix, a set can be used. This creates a process
that is not structurally equivalent to the initial one.

RESOURCE = (lock->unlock->RESOURCE).
USER = (acquire->use->release->USER).
||S = (a:USER || b:USER || {a,b}::RESOURCE).

Process Calculi

Parallel Composition

A quick demo?

Process Calculi

Variants

Communicating Automata

Communicating Automata [Mil99]

Binary synchronization through complementary actions a and
a

Lean syntax

Semantics given by either:

Transition rules
Reaction rules (à la Chemical Abstract Machine)

Process Calculi

Variants

Communicating Automata

Syntax

There is no layering of sequential and parallel processes

Processes are parameterized by their actions (relabeling)

new restricts the scope of an action (hiding)

D ::= A(−→a) = PA

P ::= A〈−→a 〉 |
∑

i∈I αi .Pi | P1|P2 | new a P

Process Calculi

Variants

Communicating Automata

Labelled Semantics

Sumt
M + α.P + N

α→P

P
λ→P ′ Q

λ→Q ′
Reactt

P | Q τ→P ′ | Q ′

P
α→P ′

L-Part
P | Q α→P ′ | Q

Q
α→Q ′

R-Part
P | Q α→P | Q ′

P
α→P ′

Rest if α /∈ {a, a}
new a P

α→new a P ′

{
−→
b /−→a }PA

α→P ′
Identt if A(−→a) = PA

A <
−→
b >

α→P ′

Process Calculi

Variants

Communicating Automata

Semantics - Structural Congruence

Definition

Two processes P and Q are structurally congruent, P ≡ Q, if they
are identical up to structure. Structural congruence is the least
equivalence relation preserved by the process constructs and the
following rules:

P ≡ Q modulo alpha-conversion of bound variables (new)

P ≡ Q modulo reordering choices

P ≡ Q modulo reordering parallel composition (including P | 0 ≡ P)

restrictions

new a (P|Q) ≡ P|new a Q if a is not free in P
new a 0 ≡ 0
new a (new b P) ≡ new b (new a P)

A <
−→
b >≡ {

−→
b /−→a }PA if A(−→a) = PA

Process Calculi

Variants

Communicating Automata

Semantics - Reaction Rules

Tau
τ.P + M → P

React
(a.P + M)|(a.Q + N) → P|Q

P → P ′
Par

P|Q → P ′|Q

P → P ′
Res

new a P → new a P ′

P → P ′
Struct if P ≡ Q and P ′ ≡ Q ′

Q → Q ′

Process Calculi

Variants

Communicating Automata

Example [Mil99]

Let us consider P = new a((a.Q1 + b.Q2) | a) | (b.R1 + a.R2).

React
(a.Q1 + b.Q2) | a.0→ Q1 | 0

Struct
(a.Q1 + b.Q2) | a → Q1

Res
new a ((a.Q1 + b.Q2) | a) → new a Q1

Par
new a ((a.Q1 + b.Q2) | a) | (b.R1 + a.R2) → new a Q1 | (b.R1 + a.R2)

Process Calculi

Variants

Communicating Automata

Example [Mil99]

Let us consider P = new a((a.Q1 + b.Q2) | a) | (b.R1 + a.R2).

React
(a.Q1 + b.Q2) | a.0→ Q1 | 0

Struct
(a.Q1 + b.Q2) | a → Q1

Res
new a ((a.Q1 + b.Q2) | a) → new a Q1

Par
new a ((a.Q1 + b.Q2) | a) | (b.R1 + a.R2) → new a Q1 | (b.R1 + a.R2)

Process Calculi

Variants

Communicating Automata

Example [Mil99]

Let us consider P = new a((a.Q1 + b.Q2) | a) | (b.R1 + a.R2).

React
(a.Q1 + b.Q2) | a.0→ Q1 | 0

Struct
(a.Q1 + b.Q2) | a → Q1

Res
new a ((a.Q1 + b.Q2) | a) → new a Q1

Par
new a ((a.Q1 + b.Q2) | a) | (b.R1 + a.R2) → new a Q1 | (b.R1 + a.R2)

Process Calculi

Variants

Communicating Automata

Example [Mil99]

Let us consider P = new a((a.Q1 + b.Q2) | a) | (b.R1 + a.R2).

React
(a.Q1 + b.Q2) | a.0→ Q1 | 0

Struct
(a.Q1 + b.Q2) | a → Q1

Res
new a ((a.Q1 + b.Q2) | a) → new a Q1

Par
new a ((a.Q1 + b.Q2) | a) | (b.R1 + a.R2) → new a Q1 | (b.R1 + a.R2)

Process Calculi

Variants

Communicating Automata

Linking both semantics

Theorem

Reaction agrees with τ -transition: P
τ→≡ P ′ if and only if P → P ′

Process Calculi

Variants

Communicating Automata

Bisimulation

Definition

A binary relation R over processes is a strong simulation if,
whenever P R Q:

if P
α→P ′, then there exists Q ′ such that Q

α→Q ′ and P ′ R Q ′.

Intuition: P “simulates” Q, it is able to “follow” its transitions.

Definition

A strong bisimulation R is a simulation whose converse relation
R−1 is also a simulation.

Example: Structural congruence is a strong bisimulation.

Process Calculi

Variants

Communicating Automata

Weak Bisimulation

The definition of weak bisimulation is essentially the same as
that of strong simulation except that the transition relation is
replaced by a relation which makes it possible to ignore
internal τ actions.

A process can be replaced by a process which behaves
equivalently up to observable actions.

Process Calculi

Variants

The π-calculus

The π-calculus [Mil99]

Actions are not only used to synchronize processes, they are also
used as channels of communication, communicating values that are
themselves channels:

The structure of the system is dynamic.

The expressive power is completely different: for instance, it is
possible to encode the λ-calculus.

Process Calculi

Variants

The π-calculus

Syntax

π ::= x(y) receive y along x
| x(y) send y along x
| τ unobservable action

P ::=
∑

i∈I πi .Pi | P1|P2 | new x P | !P

Mutually recursive definitions are replaced by repetition (in the
basic π-calculus): !P ≡ P|!P.

Process Calculi

Variants

The π-calculus

Semantics (Reaction Rules)

Tau
τ.P + M → P

React
(x(y).P + M)|(x(z).Q + N) → {z/y}P|Q

P → P ′
Par

P|Q → P ′|Q

P → P ′
Res

new a P → new a P ′

P → P ′
Struct if P≡Q and P ′≡Q ′

Q → Q ′

Process Calculi

Variants

The Asynchronous π-calculus

The Asynchronous π-calculus

The asynchronous π-calculus is defined as a subset of the
π-calculus where:

There is no output prefixing (a process may only output a
value and stop).

There is no output in choices (in order to avoid
synchronization, in particular in a distributed setting, at the
implementation level).

It is “almost” as expressive as the π-calculus.

Process Calculi

Variants

The Asynchronous π-calculus

Example: the join-calculus [FG96, FG02]

Syntax

P ::= x〈u〉 message send
| P1|P2 parallel composition
| def x(u)|y(v) . P1 in P2

A process and its channels are jointly defined in a construct
that looks like a function definition (the scope of u and v is
P1, the scope of x and y the whole definition).

Informal semantics: the reception of a message on both u and
v (join pattern) spawns a process P1 and proceeds with P2.

Process Calculi

Conclusion

Some other interesting topics

Higher-order vs first-order process calculi (it is possible to send
process expressions rather than simply names over channels)

Reconciling the actor model [HBS73, Agh86] and process
calculi [AT04]

The ambient calculus [CG98] (the focus is on movement
rather than communication)

Process Calculi

Conclusion

Current Research

Developping new calculi that better capture (some aspects of)
computation

Improving the capabilities for reasoning on processes:

“Well-behaved” subcalculi (with stronger properties)
Behavioral theory
Specific logics

Understanding the relative expressivity of process calculi
(using encodings)

Process Calculi

Conclusion

What can we do with all this?

Analysis: extract the behavior of an existing system and
analyze its properties.

Synthesis (model-driven development): model new systems
and derive their implementation (with an objective of
correction by construction)

Program language design: improve current support for
concurrency; reduce the gap between the models and the
implementation. Examples:

Pict [PT97], based on the π-calculus
JoCaml [MM07] (http://jocaml.inria.fr/)
Cω (http://research.microsoft.com/Comega/)

Process Calculi

Conclusion

G. Agha.
Actors: A Model of Concurrent Computation in Distributed
Systems.
MIT Press, 1986.

Gul Agha and Prasanna Thati.
An algebraic theory of actors and its application to a simple
object-based language.
In From Object-Orientation to Formal Methods, volume 2635
of Lecture Notes in Computer Science, pages 26–57.
Springer-Verlag, 2004.

Luca Cardelli and Andrew D. Gordon.
Mobile ambients.
In Maurice Nivat, editor, Proceedings of the First International
Conference on Foundations of Software Science and
Computation Structure, volume 1378 of Lecture Notes in
Computer Science, pages 140–155. Springer-Verlag, 1998.

Process Calculi

Conclusion

Cédric Fournet and Georges Gonthier.
The reflexive CHAM and the join-calculus.
In Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 372–385, St. Petersburg, FL, USA, January
1996. ACM Press.

Cédric Fournet and Georges Gonthier.
The join calculus: A language for distributed mobile
programming.
In Applied Semantics, International Summer School, APPSEM
2000, pages 268–332. Springer-Verlag, 2002.
Advanced Lectures.

Carl Hewitt, Peter Bishop, and Richard Steiger.
A universal modular actor formalism for artificial intelligence.
In IJCAI, pages 235–245, 1973.

Kohei Honda and Mario Tokoro.

Process Calculi

Conclusion

An object calculus for asynchronous communication.
In Pierre America, editor, Proceedings of European Conference
on Object-Oriented Programming (ECOOP’91), volume 512 of
Lecture Notes in Computer Science, pages 133–147, Geneva,
Switzerland, July 1991. Springer-Verlag.

Robin Milner.
Elements of interaction: Turing award lecture.
Communications of the ACM, 36(1):78–89, 1993.

Robin Milner.
Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

J. Magee and J. Kramer.
Concurrency: State Models and Java.
Wiley, 2nd edition, 2006.

Louis Mandel and Luc Maranget.
The JoCaml language - Documentation and user’s manual.

Process Calculi

Conclusion

INRIA, July 2007.
Release 3.10.

Robin Milner, Joachim Parrow, and David Walker.
A calculus of mobile processes, I.
Information and Computation, 100(1):1–40, 1992.

Benjamin C. Pierce and David N. Turner.
Pict: A programming language based on the pi-calculus.
In Proof, Language and Interaction: Essays in Honour of
Robin Milner. MIT Press, 1997.

	Introduction
	Modelling Sequential Processes
	Modelling Sequential Processes with LTSs
	Modelling Sequential Processes with FSPs
	Semantics

	Parallel Composition
	Variants
	Communicating Automata
	The -calculus
	The Asynchronous -calculus

	Conclusion

