
Execution Levels for Aspect-Oriented Programming:
Design, Semantics, Implementations and Applications

Éric Tantera, Ismael Figueroaa,b, Nicolas Tabareaub

aPLEIAD Laboratory
Computer Science Department (DCC)
University of Chile – Santiago, Chile

bINRIA – Nantes, France

Abstract

In aspect-oriented programming (AOP) languages, advice evaluation is usually
considered as part of the base program evaluation. This is also the case for cer-
tain pointcuts, such as if pointcuts in AspectJ, or simply all pointcuts in higher-
order aspect languages like AspectScheme. While viewing aspects as part of base
level computation clearly distinguishes AOP from reflection, it also comes at a
price: because aspects observe base level computation, evaluating pointcuts and
advice at the base level can trigger infinite regression. To avoid these pitfalls,
aspect languages propose ad-hoc mechanisms, which increase the complexity for
programmers while being insufficient in many cases. After shedding light on the
many facets of the issue, this paper proposes to clarify the situation by introduc-
ing levels of execution in the programming language, thereby allowing aspects to
observe and run at specific, possibly different, levels. We adopt a defensive de-
fault that avoids infinite regression, and gives advanced programmers the means
to override this default using level-shifting operators. We then study execution
levels both in practice and in theory. First, we study the relevance of the issues
addressed by execution levels in existing aspect-oriented programs. We then
formalize the semantics of execution levels and prove that the default semantics
is indeed free of aspect loops. Finally, we report on existing implementations of
execution levels for aspect-oriented extensions of Scheme, JavaScript and Java,
discussing their implementation techniques and current applications.

Key words: Aspect-oriented programming, meta-programming, infinite

IEarlier versions of the main matter of this article appeared in the informal proceedings of
the Scheme and Functional Programming workshop 2009 [42], and in the proceedings of the 9th
International Conference on Aspect-Oriented Software Development [43]. Additional content
on exception handling appears in the proceedings of the Foundations of Aspect Languages
workshop 2011 [22]. Accompanying material and notes are available online:
http://pleiad.cl/research/scope/levels

Éric Tanter is partially funded by FONDECYT Project 1110051. Ismael Figueroa is funded
by a CONICYT-Chile Doctoral Scholarship.

Email addresses: etanter@dcc.uchile.cl (Éric Tanter), ifiguero@dcc.uchile.cl
(Ismael Figueroa), nicolas.tabareau@inria.fr (Nicolas Tabareau)

Preprint submitted to Elsevier June 12, 2013

http://pleiad.cl/research/scope/levels

regression, execution levels, AspectJ, LAScheme, AspectScript.

1. Introduction

In the pointcut-advice model of aspect-oriented programming (AOP) [31,
53], as embodied in e.g. AspectJ [29] and AspectScheme [19], crosscutting be-
havior is defined by means of pointcuts and advices. A pointcut is a predicate
that matches program execution points, called join points; and an advice is the
action to be taken at a join point matched by a pointcut. An aspect is a module
that encompasses a number of pointcuts and advices.

A major challenge in aspect language design is to cleanly and concisely
express where and when aspects should apply. To this end, expressive pointcut
languages have been devised. While pointcuts were initially conceived as purely
“meta” predicates that cannot have any interaction with base level code [53],
the needs of practitioners have led aspect languages to include more expressive
pointcut mechanisms. This is the case of the if pointcut in AspectJ, which
takes an arbitrary Java expression and matches at a given join point only if
the expression evaluates to true. Going a step further, higher-order aspect
languages like AspectScheme and AspectScript [47] consider a pointcut as a
first-class function like any other, thus giving the full computational power of
the base language to express both pointcuts and advices. In these cases pointcut
evaluation is performed at the base level, emitting its own join points.

On the other hand, advices were initially seen as a piece of base-level func-
tionality [53]. In other words, an advice is just like an ordinary function or
method, that happens to be triggered implicitly whenever the associated point-
cut matches. Indeed, considering advice as base-level code clearly distinguishes
AOP from runtime meta-object protocols (MOPs), considered by many as the
ancestors of this form of AOP.

Because aspects observe evaluation of base computation, evaluating advices
and pointcuts at the base level can trigger infinite regression. This is a widely-
recognized1 problem that can happen easily: it is sufficient for the evaluation
of an advice or a pointcut to trigger a join point that is potentially matched
by the same aspect, either directly or indirectly. Although the potential for
infinite regression is a direct consequence of considering advice and pointcut
execution as base computation, existing solutions are not based on this insight.
Instead, most of them rely on control flow checks, which are eventually unable
to properly discriminate aspect computation from base computation.

To address this issue we choose to question the basic assumption that point-
cut and advice are intrinsically either base computation or meta computation.
Looking at how programmers use advices, it turns out that while some ad-
vices are clearly base code, some are used to implement concerns like synchro-

1http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-infiniteLoops.

html

2

http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-infiniteLoops.html
http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-infiniteLoops.html

nization and monitoring, which were previously considered as forms of meta-
programming. Inspired by a solution to infinite regression in MOPs [11], we
propose a reconciliating approach in which the metaness concern is decoupled
from the pointcut-advice mechanism, by introducing a notion of level of execu-
tion to structure computation in the core execution model.

In execution levels computation is stratified in a tower in which the flow
of control navigates. Given an initial level, join points are always emitted one
level above the current level—which is a dynamically scoped value. Aspects
are deployed at a specific level and can only affect join points emitted one
level below. This way, computation performed by aspects is not observable to
themselves nor to any other aspects that are deployed at the same level or below.

To alleviate the task for non-expert programmers, we adopt a defensive de-
fault that avoids regression by making aspect computation happen at a higher
level than base computation. For the advanced programmer, level-shifting op-
erators provide complete control over what aspects see and where they run
(i.e. who sees them), at the expense of reintroducing the potential for infinite
loops. Execution levels seamlessly address all the issues of current proposals for
avoiding infinite loops, while maintaining extreme simplicity in the most com-
mon cases for which programmers do not even need to be aware of them.

This paper is structured as follows: Section 2 describes several issues with
the current state of affairs regarding aspect weaving. Section 3 discusses related
work in both AOP and MOPs, and focuses on the central issue of conflation.
Section 4 develops our proposal of execution levels, including its safe default,
explores the flexibility offered by explicit level shifting, and shows how all the
issues raised previously are addressed. Section 5 reports on an evaluation of the
relevance of the problem we address and the benefits of our proposal in practice
through an analysis of a large number of existing AspectJ programs. Section 6
formalizes the operational semantics of our proposal, by modeling a core higher-
order aspect language with execution levels, and prove that programs that do
not make use of explicit level shifting are free of aspect loops (The full proof
is given in Appendix A). Section 7 reports on three practical implementations
of execution levels in the context of Scheme, JavaScript and Java, highlighting
both applications and implementation techniques. Finally, Section 8 concludes.

2. A Plethora of Issues

This section briefly presents several issues associated to the current state
of affairs of aspect languages. The first one, advice loops, is widely known,
so much so that its “solution”, which relies on control flow checks, has almost
acquired the status of a pattern. The second issue we discuss, pointcut loops,
is only partially addressed. The following four issues, regarding different kinds
of advice, visibility of aspects, concurrency, and exceptions reveal fundamental
flaws of currently-acknowledged patterns.

We illustrate the issues in pedagogical variants of the geometrical shapes
example—basically, points that can be moved around—using AspectJ as an

3

implementation language. To the best of our knowledge, most (if not all) of these
issues are present in mainstream languages like AspectJ, research languages like
AspectScheme, and in general in aspect languages based on the pointcut-advice
model, at least as described in [53]. We will come back to other languages and
proposals in Section 3.

2.1. Advice Loops

Consider an Activity aspect that traces whenever a point is active, that is,
when one of its methods is executing:

aspect Activity {

before(Point p) : execution(* Point.*(..)) && this(p) {

System.out.println("point active: " + p);

}

}

This AspectJ definition introduces an aspect named Activity with a single
pointcut and advice. It states that before execution of any method of a Point

object, the advice prints a message. The this(p) part of the pointcut is used to
bind the currently-executing object to the identifier p, to be used in the advice.

While straightforward, this definition fails: tracing a point object is done
by (implicitly) calling its toString method, whose execution is going to be
matched by the same aspect, and so on infinitely. Folk wisdom is that the
solution consists in excluding join points that occur in the control flow of the
advice execution. To identify the advice execution, AspectJ includes a specific
pointcut designator, which can be used as follows:

execution(* Point.*(..)) && this(p)

&& !cflow(adviceexecution() && within(Activity));

The added conjunction excludes join points that are in the control flow of an ad-
vice execution join point triggered by the Activity aspect (the adviceexecution
join point itself is not parametrized in AspectJ). Note that there exists variants
of this pattern. Some are too “strict”: omitting the within part implies exclud-
ing join points in the control flow of any advice of any aspect, while using only
cflow(within(Activity)) rules out join points that can occur in the control
flow of a standard, non-advice, method of Activity (an aspect, like an object,
may have instance variables and methods). Finally, not using cflow, but just
checking for !within(Activity) is too “loose”, since it only rejects join points
that occur lexically in the aspect; this would clearly be insufficient in our exam-
ple, because only the call to toString happens lexically in the advice, not its
actual execution2.

2The join point model of AspectJ differentiates call join points happening on the caller side,
prior to method lookup, and execution join points, on the callee side, after method lookup.

4

2.2. Pointcut Loops

Let us refine the Activity aspect such that only point objects located within
a given area are subject to monitoring. We can use the if pointcut designator
for this purpose:

aspect Activity {

Area area = ...;

before(Point p) : execution (* Point.*(..)) && this(p)

&& if(p.isInside(area)) ... {

...

}

}

As before, this(p) is used to get a hold on the currently-executing point object;
we can use it in the if condition to check that the point is within the area. This
definition is however incorrect, for a similar reason as above. Calling isInside

eventually results in an execution join point against which that very same point-
cut is evaluated again, provoking an infinite loop. As a solution we could revert
to an imperfect (too strict) variant, by ruling out join points in the control flow
of any join point that occurs in the aspect: !cflow(within(Activity)).

However this is totally impossible with current AspectJ compilers (in the
absence of a complete formal semantics of the language, compilers dictate).
Surprisingly, both the oficial AspectJ compiler ajc, and the alternative abc

compiler [6] hide join points occurring lexically in an if pointcut. Therefore,
the roots of the guilty flows of execution cannot be identified, because they
are hidden! The only solution is to refactor the aspect and move out the if

condition from the pointcut either to the advice(s), or to an external method
whose execution (but not its call) will be visible. The latter solution is arguably
the best, but it involves creating new methods for each conditional that appear
in pointcuts. In addition it is inconsistent, and probably unexpected, that
the semantics of the program should change as much depending on whether a
method call or a conditional expression is used in an if pointcut.

It is important to remark that pointcut loops are not an issue specific to
AspectJ or static aspect languages in general. In fact, the problem is evident
from the beginning in the design of languages like AspectScheme due to the
first-class nature of pointcuts (see [19], Section 2), and it is addressed with
special primitives that disable emission of join points on a particular function
application, as we will see in Section 3.

2.3. Confusion all Around

To add to the already-large confusion and complexity, control flow checks (if
at all possible) interfere in unpleasing ways with the kind of advice (before, after,
around) bound to a pointcut, leading to aspects not observing base computation
as expected. Up to now, we have only used before advice in the examples but
aspect languages generally support around advice as well. Consider the following
tracing aspect with around advice:

5

aspect Activity {

Object around(Point p) : execution(* Point.*(..)) && this(p) {

System.out.println("execution on point: " + p);

return proceed(p);

}

}

Since the advice now has to call proceed in order to trigger the original
computation, an advice execution control flow check, whose purpose is to avoid
the advice loop, will discard all subsequent join points of the nested base program
execution, preventing the tracing of all method executions on p as intended.

In the particular case of AspectJ, a before advice will actually print all
method executions on p, including executions caused by self calls (such as move
calling setX, or recursive methods). Of course, because the advice prints the
point object, it is subject to an advice loop that can only be avoided using a
control flow check (Section 2.1).

The fact that using before advice works might seem surprising because, in-
tuitively, one could expect that

before() : pc() { ...before action... }

is equivalent to3:

Object around() : pc() {
...before action...

return proceed();

}

Nevertheless, the core of the issue is that control flow checks are unable
to discriminate advice execution from the original base program computation
triggered by proceed. Relying on AspectJ-like semantics of before advice is
still insufficient, since it does not cover the cases where the advice needs to
change the arguments or return value of proceed. We consider the unfortunate
interaction between control flow checks and proceed a major issue of current
languages.

2.4. Visibility (of) Aspects

Previous issues mostly deal with the visibility of aspect computation to itself.
It is also important to consider the fact that several aspects coexist in a program,
and may or may not need to observe each other’s computation.

3The degree to which this equivalence is explicitly recognized and accepted differs according
to the language. For instance, in AspectScheme, before advice is only syntactic sugar for
around advice following the given pattern. The formal semantics of AspectScheme therefore
contemplates only around advice. On the contrary, AspectJ implementations do not consider
before advice as syntactic sugar, but as an opportunity for optimization.

6

Suppose we add a FrequencyDisplay aspect that measures the number of
times a point object is used per time unit in order to update its displayed size
accordingly. The sheer fact of having the Activity aspect calling isInside

and toString means that the measurements of FrequencyDisplay are silently
affected.

Conversely, one may want the computation of an aspect to be (at least par-
tially) visible to others. Suppose that the Activity aspect calls the refresh()

method of a global Display. In addition, a Coalescing aspect is in charge
of gathering all refresh actions that occur within a certain time interval into
a single refresh. Both base objects and the Activity aspect call refresh,
and Coalescing ought to be aware of all of them. For that, at least part of
Activity’s computation must be visible to the coalescing aspect.

Control-flow checks cannot fulfill the need for visibility control between as-
pects in a satisfying manner, mostly for the same reason we described in Sec-
tion 2.3; neither can aspect precedence, which only deals with the issue of shared
join points.

2.5. Concurrency

Moreover, control-flow checks completely break in the presence of concur-
rency. Concurrent advice execution is gaining attention to take advantage of
multicores, as for instance with the technique of buffered advice [1]. To illus-
trate the issue of control-flow checks in presence of concurrency, suppose the
Activity aspect logs its output to a file. In order to be more efficient, writ-
ing to the file is delegated to a timer thread that buffers pending log actions,
and flushes them to the file at certain time intervals4. In AspectJ, a simpli-
fied version of this behavior could be implemented using the Timer/TimerTask
framework of Java, e.g.:

class LogTask extends TimerTask {

Point p;

LogTask(Point p){ this.p = p; }

void run(){

log.write("execution on point: " + p);

}

}

aspect Activity {

Timer t = new Timer();

before(Point p) : execution (* Point.*(..)) && this(p) {

t.schedule(new LogTask(p), 1000);

}

}

4Note that the timer thread runs independently of the aspect and therefore there is no
parent-child relation between the flow of the aspect and the flow of the timer thread.

7

Writing to the file in the LogTask implies calling the toString method of point
objects, resulting in an infinite loop. This loop, however, cannot be avoided
through control-flow checks related to the advice execution, simply because the
execution of toString does not happen in the control flow of the advice, but
in a separate thread of execution. Note that if the LogTask class were defined
lexically within Activity, either as a named or anonymous inner class, then
the !cflow(within(..)) pattern would work. However, this is not the general
case, and in addition, as argued in Section 2.1, the pattern is too strict.

2.6. Exception Handling

An additional issue comes from the fact that aspect-oriented languages usu-
ally extend existing languages without paying special attention to the underly-
ing exception handling mechanism. Accordingly, there is no difference between
aspect and base handlers or exceptions, and as a consequence exceptions may
inadvertently trigger execution of unintended handlers.

This happens when aspect exceptions are handled by base handlers, or du-
ally, when base exceptions are caught by aspect handlers. Although these situa-
tions may be desired in some cases, e.g. to implement global exception-handling
aspects, current aspect languages lack a mechanism to control this interaction.
This makes it difficult to reason about complex control flow interactions between
aspects and base code in a system.

A base handler catching an aspect exception. To illustrate the first problematic
situation consider the single-threaded Activity aspect with logging (using the
standard Java Logger class):5

aspect Activity {

String logName = ...

Object around(Shape s):

call(* Shape+.*(..)) && this(s) {

Logger.getLogger(logName).log("execution on shape" + s);

return proceed(s);

}

}

The aspect intercepts calls to any method of Shape objects, including objects
from subclasses. Note that getLogger throws a NullPointerException if its
argument is null.

Consider now the pipeline method that applies a composed transformation
to a shape, yielding a new shape6. The method receives a list of Transforms, it
concatenates them, and finally apply the resulting transformation to the shape.
Applying the composed transformation fails with a NullPointerException if
a transformation in the composition is null.

5Assume a control-flow check (Section 2.1) to avoid looping on the implicit toString calls.
6We base our example on the Java 6 java.awt.geom API for 2-D geometry.

8

Shape pipeline(Shape s, List<Transform> trans) {

try {

Transform t = new Transform(); // identity trans.

for (Transform tran : trans) {

t.concatenate(tran);

}

return s.transform(t);

}

catch (NullPointerException npe) {

return s;

}

}

Note that instead of eagerly performing a linear scan of the list of transforma-
tions just to check that no transformation is null, or to check for null at every
step of the iteration, the whole operation is performed inside a try-catch block.
If applying the composed transformation fails, the method simply returns the
unmodified shape.

Observe that the call to transform is advised by the Activity aspect. Be-
cause the exception propagation semantics do not take into account the differ-
ence between aspect and base exceptions or handlers, a NullPointerException

raised from evaluation of the advice will be caught by the catch block of
pipeline. As a result the method will return the original shape regardless
of the transformations it receives as argument.

An aspect handler catching a base exception. Conversely, the problem can man-
ifest as a base exception caught by an aspect handler. Consider the following
variant of the Activity aspect, which enforces a strict logging policy in which
the program is halted if the aspect cannot properly write to the log:

aspect Activity {

String logName = ...

Object around(Shape s): call(* Shape+.*(..)) && this(s) {

try {

Logger.getLogger(logName).log("execution on shape: " + s);

return proceed(s);

}

catch (NullPointerException npe) {

System.exit(ERROR);

return null;

}

}

}

In this case, exceptions thrown by transform above will be caught by the advice
handler because this handler is closer in the call stack to the point in execution
where the exception is thrown. Consequently, passing a list of transformations

9

with null elements to pipeline will halt the program instead of just returning
the unmodified shape.

3. From Conflation To Stratification

Some of the issues presented above are known by the AOP community, and
there are several proposals to address them. This section describes these pro-
posals and then shows that all the issues come as a consequence of the conflation
of aspect and base computation. To show this we then step back to reflect about
conflation in meta-object protocols, considered as ancestors of AOP, to finally
describe how conflation manifests in aspect-oriented programming. Based on
these insights Section 4 presents our proposal of execution levels for aspect-
oriented programming.

3.1. Lessons Learned from Aspect-Oriented Programming

Existing proposals address the issues presented in Sections 2.1 to 2.5 either
by selectively and explicitly disabling aspect weaving, or by implicitly detecting
looping situations and avoiding them. In addition there are specific proposals
to deal only with the exception handling issues of Section 2.6.

Explicit disabling of weaving. AspectScheme [19] supports a primitive function
application, app/prim, which does not generate a join point. This is required in
AspectScheme to address looping issues that arise from the fact that pointcuts
and advices are standard first-class functions. Evaluating a pointcut therefore
immediately results in a loop if no mechanism is provided. The same holds for
applying proceed (which is not a keyword, but a function too). Unfortunately,
app/prim does not help in most of the issues we presented because it only hides
the application join point, not the subsequent function execution and nested
computation (in that sense, it shares the same limitations as the lexical within
pointcut of AspectJ).

AspectML [14] suggests a disable primitive that hides the computation of
a whole expression. While this is certainly more effective than a pure lexical
primitive like app/prim, it shares the same flaws as the control flow patterns
in AspectJ. A similar mechanism is proposed by Bockisch et al. in the form of
a declare ignore statement [7]. This statement allows to ignore join points
raised during the control flow of specific aspects or individual pointcuts. Al-
though more expressive, it can be considered as a variant of the disable prim-
itive, thus sharing its limitations.

Controlling aspect reentrancy. In previous work, we draw an analysis of the
two first issues of the previous section, under the umbrella term of aspect reen-
trancy [39]. We distinguish between base-triggered reentrancy (caused when an
aspect matches join points that are produced by e.g. a recursive base program,
not discussed here), advice-triggered reentrancy (Section 2.1), and pointcut-
triggered reentrancy (Section 2.2). We show that base- and advice-triggered
reentrancy can be avoided using well-known patterns like control-flow checks,

10

at the expense of complex definitions. We also pinpoint the fact that current
AspectJ compilers make it impossible to get rid of pointcut-triggered reentrancy
without having to refactor the aspect definition.

In particular, we propose a revised semantics for if pointcuts, such that
their execution is fully visible to all aspects, except themselves. To be able to
determine reentrant join points at a pointcut, we introduce a pointcut execution
join point, similarly to the already-existing advice execution join point found in
several aspect languages. Such a join point is produced internally upon pointcut
evaluation, and is necessary to be able to get rid of pointcut-based reentrancy.
The approach is however also based on control-flow checks.

Stratified Aspects. To the best of our knowledge, the first piece of work directly
related to the issue of infinite recursion with the pointcut/advice mechanism is
due to Bodden and colleagues [8]. With stratified aspects, aspects are associated
with levels, and the scope of pointcuts is restricted to join points of lower levels.
The work focuses on advice-triggered reentrancy only, and does not mention the
issue related to e.g. if pointcuts.

The fundamental limit of stratified aspects is that levels are statically deter-
mined. That is, classes live at level 0, aspects at level 1, meta-aspects at level 2,
and so forth. As a consequence, as recognized by the authors, it is impossible
to properly handle shift downs, i.e. when an aspect calls a method of a level 0
object.

Stratified aspects only avoid advice looping provided that aspects (and meta-
aspects, and so on) never call code at lower levels. This is a serious limitation
because entities at each static level have to be implemented as completely closed
worlds: they cannot use any shared library that is subject to weaving. In
addition, a static analysis would be required to enforce the absence of loops.
This could be good enough for particular applications of aspects, but would
still be subject to the other issues of Section 2.

Originated from the work on stratified aspects, the recent join point types
for implicit invocation with implicit annoucement (IIIA) by Steimann et al. [38]
advocates for representing join points as instances of class-like structures called
join point types. Although their work is focused on modularity issues, they
relate their proposal with the issue of infinite regression. They argue that strat-
ified aspects can be emulated simply by defining disjoint sets of join point types.
In addition, it is said that aspects cannot exhibit join points in order to avoid
infinite loops, following the stratified aspects principle. Being a static mecha-
nism, this approach suffers from the same closed-world limitation as stratified
aspects, yielding infinite loops as soon as shared entities are used7.

Solving Confusion in Exception Handling. One of the bug patterns described
by Coelho et al. [13] is that of a base handler inadvertently catching an aspect
exception. To avoid it, they propose to define custom exception hierarchies for
each aspect, as also suggested by Robillard and Murphy [35] for Java programs.

7See loop examples in IIIA online: http://pleiad.cl/research/scope/levels

11

http://pleiad.cl/research/scope/levels

However, the use of custom exception hierarchies does not solve the issues
presented in Section 2.6. First, because a custom aspect exception can still be
caught by a general base handler, like catch(Exception e) in AspectJ. And
also because regular exceptions raised in the control flow of an advice can still
propagate to an unintended base handler. This problems could be alleviated
using static exception flow analyses, but with a considerable increase in the cost
and complexity of aspect development.

Cacho et al. [10] propose the notion of exception channels and pluggable han-
dlers. They extend AspectJ’s pointcut language to allow the creation of global
exception paths, associating a particular handler to a set of code locations where
exceptions are raised. Although this approach can solve the presented issues, it
must be done manually and case-by-case, which can be error-prone and hard to
maintain.

We conclude this section remarking that although the first three approaches
presented seem to address the looping issues, all of them are (at best) based on
control flow checks and therefore fail when considering the issues presented in
Section 2.3, 2.4 and 2.5. None of them considers the issue of confusing base and
advice execution through proceed (our previous reentrancy control proposal is
formulated only in terms of before advice). Mutual visibility among aspects as
well as the possibility of delayed advice computation are also not considered.
The most promising solution seems to be that of stratified aspects, but the
limitation they face is too restrictive in practice.

3.2. Lessons Learned from Meta-Object Protocols

It turns out that the issues we have been exposing up to now are, to a
large extent, reminiscent of the issue of meta-circularity, which has long been
identified in reflective architectures.8

Reflective towers. Seminal work on reflection focused on the notion of a reflec-
tive tower. This tower is a stack of interpreters, each one executing the one
below. Reification and reflection are level-shifting mechanisms, by which one
can navigate in the tower. This idea was first introduced by Brian Smith [37]
with 2-Lisp and 3-Lisp, and different flavors of it were subsequently explored,
with languages like Brown [52] and Blond [15].

2-Lisp focuses on structural reflection, by which values can be moved up
and down. An up operation reduces its argument to a value and returns (a
representation of) the internal structure of that value (i.e. its “upper” identity).
Conversely, down returns the base-level value that corresponds to a given internal
structure. 3-Lisp introduces procedural reflection by which computation can
actually be moved in the tower. This is done by introducing a special kind
of abstraction, a reflective procedure, which is a procedure of fixed arity that,

8We could go much further back in time, and relate these issues to Russel’s paradox; but
that would take us too far.

12

when applied, runs at the level above. It receives as parameters some internal
structures of the interpreter (typically the current expression, environment, and
continuation). Control can return back to the level below by applying the
evaluation function. Blond makes the distinction between reflective procedures
that run at the level above the level at which they are applied, and procedures
that run at the level above that at which they were defined.

Infinite regression and conflation. The issue of infinite regression in metalevel
architectures has long been identified [17, 28]. The typical solutions to address
meta-circularity issues were: a) to add base checks that stop regression, and b)
to introduce a more primitive mechanism that is not subject to redefinition.

A major step forward was proposed by Chiba et al., who recognized the
ad-hoc nature of regression checks, and identified the more general issue of
metalevel conflation [11]. In the proposed meta-helix architecture, extensions
to objects (e.g. new fields) are layered on top of each other. Levels are reified,
at runtime if necessary, and an object has a representative at each level. An
“implemented-by” relation based on delegation keeps levels clearly separated.
Denker et al. develop a similar mechanism in which metaobjects receive an
implicit “meta-context” argument such that they can explicitly determine at
which level they run [16]. Metaobjects always execute at their original level,
and execution only shift downs when a metaobject triggers the execution on the
reification of an execution event (i.e. a join point in AOP terminology).

The key lesson from the work in metaobject protocols is that the fundamental
issue comes from conflating levels that ought to be kept separate at runtime.

3.3. Towards Execution Levels for AOP

Let us reflect on the intriguing and visionary sentence from a seminal paper of
Kiczales that gave birth to what is now known as aspect-oriented programming:

“very often, the concepts that are most natural to use at the meta-
level cross-cut those provided at the base level.” [26]

The sentence clearly places what we now call an aspect at the “meta-level”,
something of a different kind. Arising from work in meta-object protocols,
designed to address what was mostly a locality issue, aspects have since then
lost their “metaness”, at least to some extent. While a pointcut is originally
seen as a pure metalevel entity (a method applicability predicate expressed in
its own language [53]), advice is just another—probably misnamed—piece of
code that has the same ontological status as a method [27].

Clearly, the pure view of pointcuts does not hold in practice: pointcuts do
generate join points. This is the case with the if pointcut of AspectJ, and
simply with all pointcuts in higher-order aspect languages like AspectScheme,
AspectML, and AspectScript. Whether advice is meta or not is debatable,
and we believe, depends on what advice we are considering. Our stance on
this issue is that while we recognize that some aspects can be part of the base

13

pc()

...setX(2)...

call

..isInside(a)..

call
ctx

adv(..ctx..)
advexec

..toString()..

call

base
meta

pcexec

Figure 1: Join points and aspect execution in aspect languages with if pointcuts or higher-
order pointcuts, and base-level advice.

application logic, some aspects do correspond to metalevel concerns as stated
above by Kiczales. In other words, we acknowledge the fact that AOP can
be (and is) used for metaprogramming. Many applications that used to be
considered as illustrative of MOPs [54], like synchronization and monitoring,
are now programmed using aspects, mostly due to the practical benefits of
pointcut languages.

In the context of AOP, meta-circularity stems from the fact that we are using
all the power of the base language (e.g. Java) to redefine, via (if) pointcuts and
advices, the meaning of some specific base computation (join points). Moreover,
the two initial approaches used in reflective architectures, ad-hoc checks and spe-
cial primitive mechanisms, are also found in AOP. Explicit control-flow checks
in AspectJ, or the default reentrancy control we proposed previously [39], are
examples of the former. AspectScheme’s app/prim and AspectML’s disable

are examples of the latter.
To see the connection with conflation of levels, let us consider Figure 1.

When a call occurs at the base level, a call join point is created (snaky arrow).
The join point (call box) is passed to the pointcut. As already discussed, the
evaluation of the pointcut does not occur entirely at the metalevel, due to the
presence of e.g. if pointcuts. The pointcut returns either false (if there is no
match), or a list of bindings (ctx) if there is a match. The bindings are used
to expose context information to the advice. The advice is then called, and
runs at the base level. This means that calls occurring in the dynamic extent
of the pointcut or advice execution are reified as call join points, just as visible
as the first one. The fact that all join points (boxes) are present at the same
“level” depicts conflation. Figure 1 also shows pointcut and advice execution
join points, used in control-flow checks.

Following the meta-helix architecture proposed by Chiba et al. would mean
placing pointcut and advice execution at a higher-level of execution than “base”
code. On the one hand, this allows for a stable semantics, where issues of con-
flation can be avoided [11, 8, 16]. On the other hand, this boils down to recon-
sidering AOP as just a form of metaprogramming, which defeats the original
idea of AOP [27].

14

4. Execution Levels for Aspect-Oriented Programming

We propose to resolve the “base vs meta” ontological conflict of aspect-
oriented programming by decoupling the “metaness” concern from the pointcut
and advice mechanism. To do this we introduce execution levels in the language
in order to structure computation. Each evaluation step happens at a current
level of execution. Introducing the level as a dynamic property of execution
means that the same piece of code can be evaluated at different levels during
execution of a program. This is the key fundamental difference between execu-
tion levels and stratified aspects (Section 3.1). The essence of our proposal is
to use the execution level to establish and to distinguish the ontological status
of pointcuts and advices.

In this section we introduce execution levels and discuss how they can be
used in conjunction with aspects. Instead of using AspectJ as in the previous
sections we use our research language LAScheme, a simple higher-order aspect
language with execution levels. Its formal semantics is described in Section 6.

We start with an overview of LAScheme in Section 4.1. Then Section 4.2
exposes the default way in which pointcuts and advices are evaluated, showing
how this default behavior directly addresses the issues described in Sections 2.1,
2.2, and 2.3. Next, Section 4.3 gives more control to programmers by intro-
ducing level-shifting operators, making it possible to address visibility concerns
(Section 2.4). Section 4.4 shows how to capture and later reinstate an execu-
tion level, allowing to address the concurrency issue described in Section 2.5.
Section 4.5 defines a notion of control flow that is sensitive to execution levels,
and shows how to override the default semantics given in Section 4.2. Finally
Section 4.6 discusses how to address the issues related to exception handling,
described in Section 2.6.

4.1. LAScheme Basics

LAScheme is an aspect-oriented extension to the higher-order functional
programming language Scheme, following the design of AspectScheme [19], but
considering only one kind of join points: function application.

A join point is composed of the function being applied, its arguments and
the level of execution it is bound to. A join point is also bound to a context,
which we explain below in Section 4.5. An aspect is defined by two functions: a
pointcut function and an advice function. An aspect is deployed globally using
the deploy primitive that takes a pointcut and an advice as arguments. A
pointcut is a function that takes a join point as input and returns either false
(#f) if it does not match, or a (possibly empty) list of context values exposed to
the advice. A predefined call pointcut is provided as well as the logical pointcut
combinators &&, || and !. An advice takes as parameters a proceed function,
a list of context values (coming from the pointcut), and the arguments at the
join point. Figure 2 illustrates programming in LAScheme; the code combines
advice and pointcut loops, based on the examples of Section 2.1 and 2.2.

15

(define point-operation

(λ (jp)

(let ((p (car (args jp))))

(if (and (Point? p) ((|| (call move) (call setX)

(call setY) (call to-string)

(call is-inside)) jp))

’()

#f))))

(define point-in-area

(let ((area ...))

(λ (jp)

(let ((p (car (args jp))))

(if (and (Point? p) (is-inside p area)) ’() #f)))))

(define activity

(λ (proceed ctx . args)

(write "point active ")

(write (to-string (car args)))

(proceed args)))

(deploy (&& point-operation point-in-area) activity)

(define p (make-point 0 0))

(setX p 2)

Figure 2: Programming in LAScheme. The code combines the examples of Section 2.1 and 2.2.

4.2. Aspects and Levels: Default

Join Points. Upon creation, a join point is bound to a specific–and fixed–level
of execution. When a function application is performed at level n, the corre-
sponding join point is bound at level n+ 1.

Aspects. Similar to join points, whenever evaluation of deploy happens at level
n, the deployed aspect is bound at level n + 1. A deployed aspect is a triple
composed of its level, pointcut and advice.

Weaving. When a join point is emitted, the weaver examines the deployed as-
pects to construct a woven function. If several aspects match the join point,
the corresponding advices are chained such that calling proceed in an advice
triggers evaluation of the next advice in the chain. The original computation
is performed only when the last advice proceeds. Join points bound at level
n can only be matched by pointcuts whose aspect is also bound at that same
level. Both pointcut and advice evaluation is performed at the level at which
the aspect is bound.

Avoiding Advice and Pointcut Loops. Figure 3 depicts the default evaluation of
pointcuts and advice described so far, and how both advice and pointcut loops

16

(pc)

(setX …)

call

call

(is-inside ...)

call

ctx
(adv ..ctx..) (to-string ...)

callcall

Figure 3: Running pointcut and advice at a higher level of execution. The diagram above
depicts the evaluation of the code of Figure 2, using the default semantics for execution levels.

are avoided. The diagram corresponds to the code of Figure 2, evaluated in
the default semantics of execution levels. Evaluation at base code (at level 0)

generates join points at level 1 (the call box), where aspects can potentially
match and trigger advice.

Similarly the whole evaluation of pointcuts9 and advices is done at level 1,
thus the join points produced in the dynamic extent of these evaluations are
generated at level 2. This ensures that the call of is-inside done during
pointcut evaluation of activity is not seen at the same level as the call to
setX. The same holds for the call to to-string in the advice. The default
semantics therefore addresses both issues raised in Sections 2.1 and 2.2.

Proceed. As briefly explained in Section 2.3, an advice can proceed to the
computation originally described by the join point. Naturally, the original com-
putation clearly belongs to the same level as the original expression. This is
fundamental, and is precisely why using control flow checks to discriminate ad-
vice execution fails. Base computation should remain base computation, no
matter if some aspect applies to it or not, and no matter the advice kind. Using
around advice (with proceed) rather than before advice should not change the
status of the underlying computation.

Therefore, our default semantics ensures that the last call to proceed in a
chain of advices triggers the original computation at the original level. Sub-
sequently, join points generated by the evaluation of the original computation
(level 0 in that case) are seen at the same level as before (level 1). This is shown
on Figure 4, and addresses the issue raised in Section 2.3.

Aspects of aspects. The default semantics of computing pointcut and advice at
a higher-level ensures that other aspects do not see these computations. As

9Observe that pointcut evaluation emits two join points. They correspond to the Point?

predicate. In AspectJ, the Point? predicate would be performed by an instanceof check,
which happens to not pertain to the join point model, so there is no risk of loops. In contrast,
here it is just a function application, like the application of is-inside, and the proceed

function. All these would lead to loops in AspectScheme, if app/prim were not used. With
levels, app/prim is not needed in user programs.

17

(pc)

(move …)

call

call

(setX …)

call

ctx
(adv ..ctx..)

call

..before.. (proceed p) ..after..

Figure 4: Proceeding to the original computation is done at the original level.

discussed in Section 2.4, this is the desired semantics to avoid interferences
between aspects. For instance, using the Activity aspect should not affect the
measurements performed by FrequencyDisplay.

However, this layering also implies that Coalescing cannot see the compu-
tation of Activity; therefore it cannot optimize the refreshing of the Display.
In order to allow aspects to observe the activity of other aspects, while keeping
the same default semantics, it is necessary to define aspects at higher levels.
However this is not possible without language support to specify the level to
which an aspect pertains.

4.3. Shifting Execution Levels

While installing aspects at higher levels is correct, it stays within the per-
spective of “aspects are meta”. From a software engineering viewpoint, it also
implies that at the time Coalescing is deployed, it is known that this aspect
may be required at higher levels.

As we already mentioned before, AOP is not solely metaprogramming with
syntactic sugar: the original idea is that advice is a piece of base-level code [53,
27]. In some cases, advice execution should be visible to aspects that observe
base level execution. This approach is more compatible with the traditional
view according to which “advices are base”. From an engineering viewpoint,
supporting advice as base code ensures that other aspects do not need to be
explicitly deployed at a higher level, since they perceive that computation just
like base computation.

Up and down. In order to reconcile both approaches, we introduce explicit level
shifting operators in the language, such that a programmer can decide at which
level an expression is evaluated. Level shifting is orthogonal to the pointcut and
advice mechanism, and can be used to move any computation.

Figure 5 shows that shifting up an expression moves the computation of that
expression a level above the current level. This implies that join points generated
during the evaluation of that expression are visible one level above. Conversely,
shifting an expression down moves the computation of that expression a level
below the current level, as depicted on Figure 6.

18

(up (move …))

(move ...)

call

(setX …)

call

Figure 5: Shifting up.

(down (display-refresh))

(display-refresh)

call

(paint …)

call

Figure 6: Shifting down.

Using up and down, it is possible to control where aspectual computation is
performed, relative to the default semantics described in Section 4.2. One can
also use these level-shifting operators to actually deploy aspects at a particular
level.

Deploying aspects of aspects. In order to deploy an aspect that observes as-
pect computation at level 1, we can simply deploy it using the up level-shifting
operator:

(up (deploy pc adv))

Assuming the expression is evaluated at level 0, up shifts evaluation to level 1,
where the aspect deployment expression is then evaluated. This results in the
aspect being deployed at level 2, thereby observing the computation of aspects
standing at level 1. This addresses one part of the visibility issue discussed in
Section 2.4. Note that it is possible to deploy the same pointcut and advice pair
at different levels, in order to observe computation at multiple levels.

Shifting some aspect computation. One can use level-shifting operators directly
within the definitions of pointcut and advice. In line with the example of Sec-
tion 2.4, the following activity advice writes out the point object, refreshes
the display, and proceeds.

(define activity

(λ (proceed ctx . args)

(write "point active")

(write (car args))

(down (display-refresh))

(proceed args)))

(deploy point-in-area activity)

The advice uses the level-shifting operator down to move the computation
of display-refresh down to the base level. This is depicted in Figure 6.

19

Exposing display-refresh as base computation using down allows another
aspect, like Coalescing, to take effect and optimize that computation. This
example illustrates how execution levels can be used to fully address the visibility
issues of Section 2.4.

Note however that moving down a part of an aspect computation may po-
tentially lead back to pointcut or advice loops; e.g. consider what would happen
if we were to move down the computation of is-inside in the point-in-area

pointcut.

4.4. Capturing Execution Levels

We now turn our attention to the issue of delayed aspect computation, such
as in the concurrency example presented in Section 2.5. Consider that the
activity advice defined previously schedules a logging task to be run by a
separate timer thread. How can we recognize that the computation of that task
relates to the advice execution?

In the model we have presented so far, functions run at the level at which
they are applied. However, to track delayed advice execution we also need to
define functions that execute at the level they were defined10. Intuitively, these
approaches can be related to dynamic and static scoping respectively. This
interpretation fits the notion that the execution level is a property of a flow of
execution, which nevertheless can be captured and reinstated.

We therefore introduce a new kind of lambda abstraction, denoted λ•, called
a level-capturing function. A λ•-abstraction is executed at the level of execution
during which it was evaluated to a closure value11.

(define activity

(λ (proceed ctx . args)

(schedule-task (λ•() (log-to-file (car args))))

(proceed args)))

By defining the activity advice as above using a level-capturing function,
we ensure that the call to the point structure performed by the timer thread
when running the task is actually performed at the same level as the advice
that originated it. This addresses the issue described in Section 2.5. Level-
capturing functions are a generic construct that embodies the static scoping
discipline for execution levels; beyond the concurrency scenario presented here,
a static scoping discipline is helpful when designing a library that provides a set
of functions that should be guaranteed to run at the same, predefined level.

4.5. Exploiting Execution Levels

Execution levels provide a certain amount of structure to computation, a
structure that can be used to reason about the computation that is taking

10The idea of level-capturing functions is directly inspired by the reflective language
Blond [15] (Section 3.2), which supports two different kinds of reflective procedures.

11Because the level of execution is a property of execution flow, a lexical definition using
λ• in a higher-order setting can yield closures bound to different levels.

20

place. We now extend the traditional notion of control flow to take levels into
account.

Level-sensitive control flow. Certain pointcuts perform join point selection not
only by looking at the current join point, but by looking at its context, which
may include other join points. This is the case of cflow pointcuts, which inspect
the current stack of execution12. It is important for these pointcuts to be able to
distinguish between levels, in order to avoid conflation. Section 2 has illustrated
the many downsides of a conflating control flow pointcut. As another example,
consider an aspect that watches for a particular sequence of nested calls in the
base computation. When observing the stack, it would be unfortunate for the
aspect to consider join points that do not belong to base computation at all.

The stack of execution is reified as a chain of join points, each referencing
its parent join point, denoting the surrounding pending application. Given a
join point jp, (parent jp) returns its parent, and has-parent? tests whether
a join point has a parent (only the root join point does not). Also, (level jp)

returns the level at which join point jp occurs. It is straightforward to define a
non-conflating control flow pointcut descriptor:

(define cflow

(λ (pc)

(λ (jp)

(or (pc jp)

((cflowbelow pc) jp)))))

(define cflowbelow

(λ (pc)

(λ (jp)

(and (has-parent/l? jp)

((cflow pc) (parent/l jp))))))

This mutually-recursive definition of cflow and cflowbelow is standard [19, 44].
The only modification needed to make these pointcut designators non-conflating
is to use has-parent/l? and parent/l. These functions only find a parent join
point if it occurs at the same level as the given join point.

Overriding the default semantics. As a final exercise with the practice of execu-
tion levels, let us see how to override the default semantics according to which
both pointcuts and advices execute at the meta level. We want to easily deploy
an aspect such that the original view holds: pointcuts at the meta level, and
advice at the base level.

We can take advantage of advice as first-class functions, and define a shift-down
higher-order function that takes a function f and returns a new function that
applies f one level below:

12We do not consider state-based (as opposed to stack-based) implementation of control
flow checks here [31]. It is straightforward to extend our argument to state-based cflow.

21

(define (shift-down f)

(λ args (down (apply f args))))

However, simply deploying an aspect with shift-down as follows:

(deploy pc (shift-down adv))

would be incorrect. Indeed, multiple advices are chained together by means of
proceed. As we have seen, in a higher-order aspect language, an advice is a
function that receives, amongst other arguments, a proceed function used to
either call the next advice, or to run the original computation, if it is the last
advice in the chain. Therefore, simply shifting the execution level of one advice
implies that subsequent advices also run at the modified level, and that the base
computation runs potentially at a different level than where it originated.

Therefore, care must be taken to preserve levels appropriately. The follow-
ing higher-order function adv-shift-down ensures that the execution levels are
properly maintained by shifting the proceed function in the reverse direction:
i.e. the advice body is shifted down, while the proceed function is shifted up
with shift-up (defined similarly to the shift-down function above).

(define (adv-shift-down adv)

(λ (proceed ctx . args)

(let ((new-proc (shift-up proceed)))

(down (apply adv (append (list new-proc ctx)

args))))))

It is now possible to depart from the chosen default semantics, for a given
aspect, in order to support the original view according to which pointcuts are
metalevel predicates and advice is base code. We can define a deploy-aj func-
tion as follows:

(define (deploy-aj pc adv)

(deploy pc (adv-shift-down adv)))

4.6. Exception Conflation

The issues about exception handling presented in Section 2.6 are also caused
by conflation, and as such we refer to them as the exception conflation problem.
We show how to exploit the structure of execution levels to address exception
conflation by level-aware exceptions and handlers. The idea is to make both
handlers and exceptions sensitive to the level of execution, such that an ex-
ception bound at level n can only be caught by a handler bound at the same
level. In LAScheme we reuse the standard exception handling mechanism of
Scheme to implement this behavior. This mechanism features the raise and
with-handlers forms to raise and handle exceptions, respectively.

22

Raising Exceptions. To raise level-aware exceptions we first define raise/l,
which raises a compound exception comprising the actual exception value and
the level of execution present when raising the exception:

(define (raise/l v)

(raise (make-exn/l (current-level) v)))

We obtain the current level of execution applying current-level. Note that
an exception carries a value v, which can be used for debugging purposes or, in
general, for non-local transfer of information.

Handling Exceptions. To handle level-aware exceptions we use Scheme’s macro
system to define the with-handlers/l expression:

(with-handlers/l ((pred1 handler1) (pred2 handler2) ...) body)

This expression takes several pairs of predicates and handlers and a body

expression. A predicate determines whether the exception is handled by the
corresponding handler. In turn, a handler is a function that takes an excep-
tion as argument. To make handlers aware of the level of execution, each of
them is bound to a handler level, which is defined as follows. If the handler
is a level-capturing function bound at level n we use that value as the han-
dler level. Otherwise we use the current level of execution, obtained applying
current-level.

An exception raised during evaluation of body and bound to level m will be
compared in ascending order against the handler levels of handleri=1.... When
the levels of the exception and the handler match, the corresponding predicate
predi is evaluated. If the predicate matches the exception, then handleri is
evaluated with the exception as an argument.

In the default semantics of execution levels, an exception-handling advice
can only capture exceptions raised by other advices applied to the same join
point, but not exceptions from the original computation. This behavior follows
the defensive design of execution levels, where programmers need not to be
aware of potential interferences unless they explicitly want to.

Overriding the default semantics. The default semantics of level-aware excep-
tion handling can also be overridden using the up and down level-shifting op-
erators, and level-capturing functions. To illustrate a situation where this is
desirable, consider a simple exception-handling aspect that provides a default
value in case the base computation that it advises fails with an exception:

(define (default-value value)

(λ (proceed ctx . args)

(with-handlers/l ((λ (x) #t) (down (λ• (x) value))

(proceed args)))))

23

plain

levels
cflow	
 checks

avoid adv
loops

no
yes
yes

no
(no)
yes

avoid pc
loops

discriminate
aspect/base

-
no [proceed conflation]

yes

visibility wrt
other aspects

partial [cannot hide]
partial [cannot hide]
yes [higher or down]

delayed aspect
computation

-
no

yes[λ·]

avoid exn
conflation

no
no
yes

Figure 7: Benefits of execution levels to address the issues of Section 2.

To capture base-level exceptions, the level of the handler must match the level
of exceptions potentially raised by the original computation, which is one level
below. Therefore it suffices to use down to create a level-capturing handler
function that will be bound to that level.

Observe that in contrast to the default semantics the handler will match
only exceptions raised from base computation. Of course if an advice uses
down to evaluate an expression, that evaluation will also be considered as base
computation and its exceptions can be caught by the advice handler.

Conversely, a situation where it is desirable to raise exceptions one level
above is to enhance a contract system such that contract-related exceptions
cannot be caught by base handlers. We describe this application in Section 7.1.

4.7. Summary

To conclude this section, Figure 7 summarizes the benefits of execution levels
compared to traditional/conflating control flow checks. The columns refer to
the different issues described in Sections 2, in order. The first row describes
the situation of “plain” AOP, that is, without using any defense against loops;
while the second row describes the approach of using control flow checks.

As shown in the third row, introducing execution levels in an aspect-oriented
language seamlessly addresses all the issues described. The possibility to shift
up/down the proceed computation is fundamental to avoid the confusion raised
by conflation. Similarly, and in a uniform way, the level-shifting operators allow
to control the interactions between aspect and base exceptions and handlers.

Moreover, programmers by default are not exposed to any additional cogni-
tive burden; average programmers are oblivious to execution levels. They only
need to know and learn about them when facing a scenario requiring level shift-
ing; that is, a scenario that requires specific visibility control between aspects,
or delayed aspect computation.

5. Evaluation of Execution Levels in AspectJ Programs

To get a more practical grasp of the issues addressed by execution levels, as
well as of the suitability of the default semantics chosen in this work, we have
performed two studies of AspectJ code. We have manually inspected the aspect
definitions in the famous textbook AspectJ in Action [30], by Laddad; as well
as from the corpus of AspectJ projects used by Khatchadourian et al. [25].

24

In the book Laddad recognizes infinite recursion of advice as a common
problem in AspectJ programs. He explains that the solution is “easy to imple-
ment” [30], and explains how to use the lexical condition !within(Aspect) in
order to avoid infinite loops. This is the exact same solution that is explained
in the AspectJ Programming Guide [5].

As explained in Section 2, the proposed solution of using within checks is not
correct. It happens to work in many cases, but is not a reliable solution. Even
when it works, it is at times not modular, creating unnecessary dependencies
between aspect definitions. An example of this modularity issue can be observed
in Listing 5.19 of AspectJ in Action13, where a within check in a logging aspect
has to be modified after using another aspect to make logging be indented14.

It is surprising that the limitations of this pattern are not even discussed in
these programming guides, and that pointcut loops are never mentioned. As
we have seen in Section 2, the only “solution” to pointcut loops in AspectJ
is to refactor the aspect moving the condition either to each associated advice
(duplicating code), or to a separate method whose execution can be filtered.
The other issues discussed in Section 2 are also not mentioned in these guides.

5.1. Study of a Textbook

We inspected the 61 aspect definitions provided in Parts 2 and 3 of AspectJ
in Action [30], which are dedicated to applications; some definitions are pro-
gressively refined versions of the same aspect15. We found that almost a third
of these aspects (19) use a within check to avoid infinite regression caused by
advices. These aspects cover applications of logging, thread safety, and trans-
action management. The rest of the aspects do not need to protect themselves
against infinite regression because their pointcuts are “narrow-enough”.

A closer look at these 19 aspects, and at why the within check is sufficient for
them, reveals an important implicit assumption in current programming guides:
that advices do not perform any computation that is both advisable and not
lexically within the advice definition. Indeed, the 19 aspects only invoke core
Java libraries (e.g. string manipulation, streams, etc.), in which the standard
AspectJ weaver is not capable of weaving aspects. This means that within

checks would break if any of these libraries could be advised. For instance,
in the area of dynamic analysis, it is fundamental to be able to advise the
complete code base in order to collect meaningful metrics, so more powerful
AspectJ weavers have been implemented, which can weave aspects into core
libraries [51, 32]. Note also that the implicit assumption that aspects do not
normally call advisable code contradicts the AOP premise according to which
“advice is just another method” (recall Section 3.2). This assumption is not
compatible with more symmetric models of AOP, as adopted for instance in

13We are working with the first edition of the book [30].
14To be exact, the indentation extension is done through a super aspect from which the

logging aspect inherits, rather than a separate aspect; the issue is the same either way.
15Details of the inspection are available online: http://pleiad.cl/research/scope/levels

25

http://pleiad.cl/research/scope/levels

CaesarJ [4], Classpects [33] or EScala [24], where every object in the system can
declare pointcuts to observe and react to the activity of other objects.

Finally, in our inspection of the 61 aspect definitions of AspectJ in Action,
we found that only 2 aspect definitions would not work “out of the box” with
the default semantics of execution levels. These two cases correspond to aspects
of aspects (for instance, Listing 11.7 shows a logging aspect that is used to trace
the behavior of both the base program and another aspect). They would require
deploying aspects at a higher level.

This means that the extension of AspectJ with execution levels that we
describe in Section 7.3 can directly support the entire set of examples in the
book. Interestingly, almost all these aspects would work directly, without any
modification; among these, a third could even be made simpler, by removing
the within check (and would be more robust); only 2 examples would require
actually knowing about levels, in order to deploy aspects appropriately.

Of course, we cannot but notice that AspectJ in Action has very little ex-
amples where multiple aspects are applied at the same time. The two examples
that rely on aspects of aspects imply the need for deploying at specific levels. We
intuit that in complex composition scenarios, knowledge about levels becomes
more necessary, and the need for explicit level shifting may arise.

5.2. Study of a Corpus of Applications

In order to further study existing aspect-oriented software, we analyzed the
corpus of 23 AspectJ projects used by Khatchadourian et al. in their pointcut
rejuvenation study [25]. To the best of our knowledge, this is the largest AspectJ
corpus, consisting of 496 aspects, in which we identify 1296 pointcut descriptors
(PCDs)16.

Like the study of AspectJ in Action, we manually inspected the aspect def-
initions and the PCDs in order to classify them according the whether or not
they rely on aspect loops checks, and in this case, whether they only rely on
static checks (within), dynamic checks (cflow), or both. The results over the 23
projects, in terms of aspects and pointcut designators, are presented in Figure 8.

They confirm that the issue of aspect loops is relevant, since nearly half
of the projects (10 out 23) have to deal with them, amounting to 14% of all
aspects, and 18% of all pointcut designators. Nearly all aspects that perform
loops checks are “system wide” aspects (tracing, fault tolerance, contracts, error
handling, persistence, distribution). The only exception we found is Quicksort*,
where the check is done to avoid loops on recursive calls. Other aspects are nar-
row enough in their quantification that loops do not occur. Also, static checks
are sufficient in many cases thanks to the assumption that advice code does not
call into woven code, as discussed previously. Finally, we found that all 496
aspects would work well “out of the box”, by removing all checks and relying
on the default semantics of execution levels. Generally, these findings are con-

16To count pointcuts, we inlined named pointcuts used in other pointcut definitions.

26

Pointcut designators # %

no check 1011 78

abstract 52 4

1063 82

static check 132 10

dynamic check 24 2

both 77 6

233 18

TOTAL 1296

Aspects # %

no check 428 86

428 86

static check 34 7

dynamic check 14 3

both 20 4

68 14

TOTAL 496

Projects with checks (10/23): RacerAJ, Recovery Cache, Quicksort*, N-version, La-
wOfDemeter, HealthWatcher v6, Jakarta Cactus, mysql-connector-java, DCM, Con-
tract4J.

Figure 8: Analysis of aspect loops checks in the AspectJ corpus.

sistent with those of the textbook study.

The conclusions of our inspection of AspectJ programs are, first that the
problems addressed by execution levels are indeed present in existing aspect-
oriented software. And second, that most of the affected code would work well
“out of the box” in the default semantics of execution levels, even in many cases
the code could be made simpler by removing control flow checks. Level shifting
is useful in few cases, especially in presence of several aspects, as expected.

We also observe that system-wide dynamic analysis aspects, like Racer [9],
confirm the need to treat the execution level as a dynamic property. These kind
of aspects monitor all computation on a system and eventually need to perform
base code operations to update their internal state, which can again be observed
by them; more generally, the computation done by any aspect ends up being
observable, even if it only calls some standard libraries. The default semantics of
execution levels address this situation directly, in contrast to stratified aspects
(Section 3.1) where aspects must be implemented as closed worlds. Interestingly,
the first AspectJ weaver for comprehensive dynamic analysis [51] uses an ad hoc
bootstrap phase flag, which is a specific case of execution level [45, 32].

The following section dives into a formal study of execution levels and their
properties. Section 7 then describes several existing implementations of execu-
tion levels and their applications.

6. Semantics and formal properties

We now turn to the formal semantics of higher-order aspects with level
shifting. We introduce a core language extended with execution levels and
aspect weaving. In this section we only present the essential elements, and skip
the obvious. The complete formal description of the language is provided online

27

(see Section 6.9). In Section 6.10 we summarize the most important formal
properties of execution levels, along with intuitive sketches of their proofs. The
complete proofs are described in Appendix A. By convention, user-visible syntax
is written in bold typewriter font, while internal forms added only for the
sake of the semantics are written in plain typewriter font.

6.1. Core Language

Figure 9 presents the user-visible syntax of the core language, i.e. with-
out aspects nor execution levels. The language is a Scheme-like language with
booleans, numbers and lists, and a number of primitive functions to operate
on these. The only expressions considered are multi-arity function application,
and if expressions. The full language includes also sequencing (begin) and
binding (let) expressions for convenience. The notation X · · · denotes zero or
more occurrences of the pattern X.

V alue v ::= (λ(x · · ·) e) | n | #t | #f | (list v · · ·)
| prim | unspecified

prim ::= list | cons | car | cdr | empty? | eq?
| pred | succ | . . .

Expr e ::= v | x | (e e · · ·) | (if e e e)

v ∈ V , the set of values

n ∈ N , the set of numbers

list ∈ L , the set of lists

x ∈ X , the set of variable names

e ∈ E , the set of expressions

EvalCtx E ::= [] | (v · · · E e · · ·) | (if E e e)

Figure 9: Syntax of the core language.

We describe the operational semantics of our language via a reduction rela-
tion ↪→, which describes evaluation steps:

↪→: L ×J × E → L ×J × E

An evaluation step consists of an execution level l ∈ L (initially 0), a join
point stack J ∈ J and an expression e ∈ E . The reduction relation takes a
level, a stack, and an expression and maps this to a new evaluation step. The
reduction rules for the core language are standard and not presented here. In
the following we describe the semantics of execution levels, join points, aspects
and their deployment, as well as the weaving semantics. Then we describe the
semantics of level-aware exception handling.

28

Expr e ::= . . . | (up e) | (down e) | (in-up e) | (in-down e)

EvalCtx E ::= . . . | (in-up E) | (in-down E)

〈l, J, E[(up e)]〉 ↪→ 〈(succ l), J, E[(in-up e)]〉 InUp

〈l, J, E[(in-up v)]〉 ↪→ 〈(pred l), J, E[v]〉 OutUp

〈l, J, E[(down e)]〉 ↪→ 〈(pred l), J, E[(in-down e)]〉 InDown

〈l, J, E[(in-down v)]〉 ↪→ 〈(succ l), J, E[v]〉 OutDown

Figure 10: Shifting execution levels.

6.2. Execution Levels

The language supports explicit execution level shifting forms, up and down
(Figure 10). Correspondingly, there are two internal (i.e. not user-visible)
marker expressions, in-up and in-down used to keep track of the level counter.
When encountering an up expression, the level counter is increased, and an
in-up marker is placed in the execution context (InUp). When the nested
expression has been reduced to a value, the in-up mark is disposed, and the
level counter is decreased (OutUp). Evaluation of a down expression is done
similarly (see rules InDown and OutDown).

6.3. Join Points

We follow Clifton and Leavens [12] in the modeling of the join point stack
(Figure 11). The join point stack J is a list of join point abstractions j, which
are tuples dl, k, v, v · · ·e: the execution level of occurrence l, the join point kind
k, the applied function v, and the arguments v · · · . An interesting benefit of
using execution levels is that it is not necessary anymore to introduce advice
execution join points to avoid advice loops, or pointcut execution join points
to avoid pointcut loops. Pointcut and advice evaluation are normal function
applications, that just happen to occur at a higher level. For simplicity and
conciseness, we only consider call join points.

In order to keep track of the join point stack in the semantics we introduce
two internal expression forms: jp j introduces a join point, and (in-jp e) keeps
track of the fact that execution is proceeding under a given dynamic join point.
The definition of the evaluation context is updated accordingly (Figure 11).

A join point abstraction captures all the information required to match it
against pointcuts, as well as to trigger its corresponding computation when nec-
essary. For instance, consider the reduction rule for call join points (Figure 11,
App). The rule specifies that when a function is applied to a list of arguments,
the expression is reduced to a jp expression with the definition of the corre-
sponding join point, which embeds the execution level at which it is visible,
(succ l), its kind call, the applied function, and the values passed to it. A
later rule (Weave, explained below) pushes the thus created join point to the

29

J ::= j + J | ε
j ::= dl, k, v, v · · ·e
k ::= call | . . .

l ∈ N

J ∈ J , the set of join point stacks

Expr e ::= . . . | jp j | (in-jp e)

EvalCtx E ::= . . . | (in-jp E)

〈l, J, E[((λ(x · · ·) e) v · · ·)]〉 ↪→ 〈l, J, E[jp j]〉 App

where j = d(succ l),call, (λ(x · · ·) e), v · · ·e

〈l, j + J,E[in-jp v]〉 ↪→ 〈l, J, E[v]〉 OutJp

Figure 11: Join points: stack, creation and disposal.

stack J , marking the expression with in-jp, and then triggers weaving. Pop-
ing a join point from the stack is done by the OutJp rule, when the expression
under a dynamic join point has been reduced to a value.

6.4. Aspects and Deployment

As described in Figure 12, an aspect is a tuple 〈l, pc, adv〉 where l denotes
the execution level at which it stands, pc is the pointcut and adv the advice
(both first-class functions). More precisely, a pointcut is a function that takes
a join point stack as input and produces either #f if it does not match, or
a (possibly empty) list of context values exposed to the advice. Higher-order
advice is modeled as a function receiving first a function to apply whenever
the advice wants to proceed, a list of values exposed by the pointcut, and the
arguments passed at the original join point [18, 19].

An aspect environment A is a set of such aspects. An aspect is deployed with
a deploy expression (added as a primitive to the language, see Figure 12). To
simplify our reduction semantics, in this section we have not included the aspect
environment as part of the description of an evaluation step. Rather, we simply
“modify” the global aspect environment A upon aspect deployment17 (see rule
Deploy). Also note that we do not model the different scoping strategies of
AspectScheme here—we restrain ourselves to deployment in a global aspect
environment. For more advanced management of aspect scoping and aspect

17The complete semantics we provide explicitly includes the aspect environment in the
program configuration (Section 6.9).

30

Aspects A = {〈li, pci, advi〉 | i = 1, . . . , |A |}
Pointcut pc ∈ J → {#f} ∪L

Advice adv ∈ (V ∗ → V)×L × V ∗ → V

prim ::= . . . | deploy

〈l, J, E[(deploy vpc vadv)]〉 ↪→ 〈l, J, E[unspecified]〉 Deploy

and A = {〈(succ l), vpc, vadv〉} ∪A

Figure 12: Aspects and deployment (global environment A).

Expr e ::= . . . | (app/prim e e · · ·)
EvalCtx E ::= . . . | (app/prim v · · · E e · · ·)

〈l, J, E[(app/prim (λ(x · · ·) e) v · · ·)]〉 ↪→ 〈l, J, E[e{v · · · /x · · · }]〉 AppPrim

Figure 13: Primitive application.

environments, see [40]. When an aspect is deployed, it is annotated with the
execution level at which it stands. This means that, when executing at level l,
(deploy p a) deploys the aspect such that it sees join points at level (succ l)
(which in turn denote computation of level l).

6.5. Primitive applications

The primitive application form, app/prim, described in Figure 13 denotes
an application that does not trigger a join point: rule AppPrim simply per-
forms the classical βv reduction. app/prim is used to hide “administrative”
applications, i.e. the initial application of the composed advice chain, and its
recursive applications. Note that contrary to AspectScheme, app/prim is not
in user-visible syntax, thanks to execution levels.

6.6. Level-capturing functions

Figure 14 extends the semantics of the language with level-capturing fun-
tions. There is a new syntactic form to define a level-capturing function, λ•,
and a new value form, called an instantiated level-capturing function and noted
λl, which represents a function that is always executed at level l. The capture
of the level is described by the rule Capture. Similar to regular function ap-
plication, applying a level-capturing function emits a join point one level above
current computation (rule App•). It is primitive function application using
app/prim which distinguishes between regular and level-capturing functions,

31

Expr e ::= . . . | (λ•(x · · ·) e) | (in-shift(l) e)

V alue v ::= . . . | (λl(x · · ·) e)

EvalCtx E ::= . . . | (in-shift(l) E)

〈l, J, E[(λ•(x · · ·) e)]〉 ↪→ 〈l, J, E[(λl(x · · ·) e)]〉 Capture

〈l, J, E[((λl1(x · · ·) e) v · · ·)]〉 ↪→ 〈l, J, E[jp j]〉 App•

where j = d(succ l),call, (λl1(x · · ·) e), v · · ·e

〈l, J, E[(app/prim (λl1(x · · ·) e) v · · ·)]〉 AppShift

↪→ 〈l1, J, E[(in-shift(l) e{v · · · /x · · · })]〉

〈l1, J, E[(in-shift(l) v)]〉 ↪→ 〈l, J, E[v]〉 Shift

Figure 14: Level-capturing functions.

using rule AppPrim for the former, and rule AppShift for the latter. In order
to keep track of the level shifting incurred by applying (using app/prim) an in-
stantiated level-capturing function, there is an extra expression in-shift that
keeps track of the level at which such a function is originally applied (Rule App-
Shift). This is necessary in order to be able to restore the original level once
the execution of the level-capturing function has finished (Rule Shift). This
level-capturing mechanism will be used in the weaving process (described in the
next section) to proceed with the original computation at the right execution
level.

6.7. Weaving

We now turn to the semantics of aspect weaving. The Weave rule describes
the process (Figure 15). A jp expression reduces to an in-jp expression, and
the join point is pushed onto the stack. The inner expression of in-jp is the
application, one execution level up, of the list of advice functions that match
the given join point, properly chained together, to the original arguments.

The weaving process is closely based on that described by Dutchyn; it differs
only in that we deal with execution levels. The W metafunction recurs on the
global aspect environment A and returns a composed procedure whose structure
reflects the way advice is going to be executed.

For each aspect 〈li, pci, advi〉 in the environment, W first checks whether
the aspect is at the same execution level as the join point, i.e. if the aspect can
actually “see” the join point. If so, it applies its pointcut pci to the current
join point stack. If the pointcut matches, it returns a list of context values, c.
W then returns a function that, given the actual join point arguments, applies
the advice advi. All this process is parametrized by the function to proceed
with, p. This function is passed to the advice, and if an aspect does not apply,

32

〈l, J ′, E[jp d(succ l), k, vλ, v · · ·e]〉 Weave

↪→ 〈l, J, E[(in-jp (up (app/prim W J|A |KJ v · · ·)))]〉

where J = d(succ l), k, vλ, v · · ·e+ J ′

W J0KJ = P Jd(succ l), k, vλ, v · · ·eK
W JiKJ = (app/prim (λ(p)

(if (eq? li (succ l))
(let ((c (pci J)))

(if c
(λ(x · · ·) (advi p c x · · ·))
p))

p))

W Ji− 1KJ)

P Jd(succ l),call, vλ, v · · ·eK = (λl(x · · ·) (app/prim vλ x · · ·)))

Figure 15: Aspect weaving.

then W simply returns this function. The base case, W J0KJ corresponds to the
execution of the original computation, P Jd(succ l),call, vλ, v · · ·eK (here we
only define P for join points of kind call). Intuitively, P corresponds to the last
application of proceed in a chain of advice; in the following we use last-proceed
to refer to P JjpK, for some jp. Note that the original computation is performed
by using a level-capturing function instantiated at the original execution level
(λl). This reflects the fact that, while pointcuts and advices run at an upper
level, the original function runs at its original level of application.

The Weave rule uses the primitive application form, app/prim (Section 6.5).
app/prim is also necessary to eventually perform the original function applica-
tion, when all aspects (if any) have proceeded. Also note that in W , the pointcut
and advice functions are applied using a standard function application.

6.8. Level-Aware Exceptions

To address the issue of exception conflation we now introduce the semantic
rules for a level-aware exception handling mechanism. Without loss of generality,
we introduce the (try e with h) expression consisting of a single exception
handler h that is unconditionally applied to exceptions raised from evaluation
of the protected expression e (in contrast to the multiple predicates approach
described in Section 4.6, or multiple type predicates as in Java).

Figure 16 describes the additional syntax and reduction rules. We extend
the user-visible syntax with the raise and try-with expressions and their

33

Expr e ::= · · · | (raise e) | (try e with e)

Exception ex ::= (exn l v)

EvalCtx E ::= · · · | (raise E) | (try E with e)
| (try ex with E)

〈l, J, E[(raise v)]〉 ↪→ 〈l, J, E[(exn l v)]〉 RaiseCapture

〈l, J, E[(raise (exn l1 v))]〉 ↪→ 〈l, J, E[(exn l1 v)]〉 Reraise

〈l, J, E[(in-up (exn l1 v))]〉 OutUpEx

↪→ 〈(pred l), J, E[(exn l1 v)]〉

〈l, J, E[(in-down (exn l1 v))]〉 OutDownEx

↪→ 〈(succ l), J, E[(exn l1 v)]〉

〈l1, J, E[(in-shift(l) (exn l2 v))]〉 ShiftEx

↪→ 〈l, J, E[(exn l2 v)]〉

〈l, J, E[(try v with e)]〉 ↪→ 〈l1, J, E[v]〉 TryV

〈l, J, E[(try (exn l v) with (λ(x · · ·) e)]〉 HndEx1

↪→ 〈l, J, E[((λ(x · · ·) e) v)]〉

〈l, J, E[(try (exn l1 v) with (λ(x · · ·) e))]〉 HndProp1

↪→ 〈l, J, E[(exn l1 v)]〉 where l1 6= l

〈l, J, E[(try (exn l1 v) with (λl1(x · · ·) e)]〉 HndEx2

↪→ 〈l, J, E[((λl1(x · · ·) e) v))]〉

〈l, J, E[(try (exn l1 v) with (λl2(x · · ·) e))]〉 HndProp2

↪→ 〈l, J, E[(exn l1 v)]〉 where l1 6= l2

Figure 16: Exception handling extensions.

respective evaluation contexts. We also define the exn normal form that contains
a value and is annotated with the level at which the exception was raised.
Evaluating (raise v) at level l creates an (exn l v) value bound to that
level (rule Raise).

Most of the rules for exception propagation through the language expres-
sions are standard, and we omit them. We focus on propagation through a
raise expression (rule Reraise), in which case no new exception is created;
instead the exception keeps propagating. In addition we focus on propagation
through the level-shifting expressions in-up, in-down and in-shift (rules
OutUpEx, OutDownEx and ShiftEx). These rules ensure that when an

34

exception is propagating through the call stack, the resulting level of execution
after propagation is the same as if the original expression would have returned
a value. In Section 6.10 we show that this is crucial to preserve the guarantees
of execution levels in presence of exceptions.

If the protected expression yields a value, the handler is not evaluated and
program reduction continues (rule TryV). Otherwise it means an exception is
raised from evaluation of the protected expression. Essentially, the exception
propagates if the handler is not bound at the same level of the exception; and
the handler is evaluated with the exception as argument if the levels match. We
distinguish the case where the handler is a regular function (rules HndEx1 and
HndProp1), and the case where the handler is a level-capturing function (rules
HndEx2 and HndProp2). Application of both kind of handlers correspond to
function applications that will emit join points.

6.9. Executable Model

We have mechanized the complete semantics of our language using PLT
Redex, a domain-specific language for specifying executable reduction seman-
tics [20]. The full definition along with a test suite is available at the execution
levels website: http://pleiad.cl/research/scope/levels.

The Redex model explicitly manages the aspect environment (ignored in the
reduction rules of this paper) and adopts a representation of function values
that includes a unique identifier, in order to be able to do reference equality of
functions (used in pointcuts).

6.10. Avoiding Loops with Execution Levels

We now analyze what kind of loops can be avoided with the default semantics
of execution levels. We present our results relying on an intuitive understanding
of the semantics described above, and defer all formal definitions and proofs to
Appendix A.

First observe that certain loops that occur due to aspects are not avoidable
with execution levels. These cases arise from interactions between advice and
base code, for instance due to using proceed with modified arguments, shared
state, etc. These interactions can be hard to track down, especially in a higher-
order setting. For instance, the following program is subject to a loop because
of a subtle interaction between the base program and the advice:

(define (f b)
(if b

(f false)
false))

(deploy (call f)
(λ (proceed ctx . args)

(proceed true)))

35

http://pleiad.cl/research/scope/levels

When f is applied, the advice intercepts the application and proceeds with
true, which makes f call itself recursively. The recursive invocation is again ad-
vised, with the same consequence. Even though f is a function that terminates
and always returns false, in the presence of the aspect it diverges.

Aspect Loops We characterize the kinds of loops that are avoided by execu-
tion levels as aspect loops. Intuitively, from the examples of Sections 2.1 and 2.2,
an aspect loop can be defined as: “a loop that happens when an aspect matches
a join point that is coming from its own activity (either pointcut or advice)”.

Aspect loops arise in AspectJ because advice and base computation are
conceptually at the same level. The same situation can happen in execution
levels if advice uses down or applies a level-capturing function bound to a level
lower than that of the advice. However, because our objective is to validate the
defensive design of the default semantics of execution levels, we consider only
programs that do not perform explicit level-shifting operations, which we call
level-agnostic programs.

Level-agnostic expression An expression e is level-agnostic if it is a user-
visible term that does not contain down, up, or level-capturing functions. This
definition only considers programs that can be expressed with user-visible syntax
to rule out degenerated cases not available to the programmer.

Theorem 6.1 (No Aspect Loops). Let e be a level-agnostic term. If all as-
pects in the environment are also level-agnostic, the reduction of e is free of
aspect loops.

In other words, programs written in the default semantics of execution levels
are free of aspect loops. The intuitive structure of the proof is as follows: if
the level of execution is tracked during evaluation and it is only incremented
and decremented implicitly by the weaver at appropriate points of execution,
and if evaluation of advice depends on that level and the fixed level of advice,
then no loop can occur via advice invocation because an advice cannot trigger
computation (other than proceed) that will emit join points below the level
of that advice.

Observe that a less strict version of the theorem, which allows to use up,
also holds because by definition an advice cannot see computation at an upper
level. We prefer the stricter version because it holds on programs written in the
default semantics, where programmers do not need to be aware of levels.

Exceptions and Loops. If execution levels are combined with an exception-
handling mechanism that does not take the level into account to propagate
exceptions, then Theorem 6.1 does not hold. Consider as a counter-example the
following program:

(define (log name value)
(if (logger-exists? name)

36

(write-to-logger (get-logger name) value)
(raise "Logger not found")))

(define (log-exn-adv (λ (proceed ctx . args)))
(try (proceed args) with (λ (exn) (log "Log" exn))))

(deploy (call log) log-exn-adv)
(log "Log" 10)

Assume a logging infrastructure with access to string-named logs through the
log function (similar to the Java Logger API), such that an exception is raised
if non-existing log name is given as argument. Consider now the log-exn-adv
advice that implements a default exception handler that logs the occurrence of
exceptions.

If by some programming error a logger named Log does not exists (e.g. it
was not initialized properly, or the developer misspelled the name), then the
program will enter into an aspect loop. This happens because although the
advice is evaluated at level 1, the handler catches an exception from the base
program, at level 0.

The reason is that a last-proceed application shifts the level of execution to
that of the original computation, in this case 0, but because standard exception
propagation rules will not shift the level back, the exception will propagate
at level 0 and will trigger evaluation of the handler also at level 0. Then,
evaluation of the handler triggers again the same aspect and also raises an
exception, leading to an infinite loop. Observe that the problem happens even
when using level-aware exception handlers, as those described in rules HndEx1
and HndEx2, because it will be the case that the current level will match the
level bound to the exception.

Therefore we remark that the level-aware propagation rules of Section 6.8
are crucial to retain the result of Theorem 6.1 in presence of exceptions, whereas
the level-aware handlers avoid the issue of exception conflation (Section 2.6).

The Value of Formalization. Although the proof of Theorem 6.1 appears to
be “intuitively obvious”, its development was valuable. First, it forced us to
precisely define the kinds of loops avoided by execution levels, in contrast to the
more general (and vague) claim that was made in [43]. In addition, this formal
endeavor led us to discover an actual error in the original semantics.

The original formulation of levels uses down—instead of a level-capturing
function—to define the original computation P J·K in rule Weave. To see why
this is not correct, consider the following advice:

(define (adv (proceed ctx . args))
(up (proceed args)))

Using down in the semantics, the original computation would incorrectly
execute at level 1, instead of level 0. The problem is that the level of execution
when applying a last-proceed function is not necessarily (succ l). Therefore,

37

using down does not guarantee that the advised computation always runs at its
original level l, conversely to what is expected.

We spotted the problem when considering programs that pass proceed
as argument to higher-order functions. While the original executable seman-
tics were implemented and tested, we did not push the higher-order cases far
enough. In fact, all the motivating examples involve only two levels, thus using
down appeared to be correct. This is yet another illustration of the inherent
limitations of test-based validation, as opposed to formal proofs.

7. Execution Levels in Practice

We report on three practical implementations of execution levels in the con-
text of Scheme, JavaScript and Java. The objective of this section is to highlight
different implementation techniques and applications of execution levels. The
languages we describe represent different points in the design space, adopting
specific tradeoffs with respect to flexibility versus efficiency.

7.1. LAScheme

The formal semantics presented in Section 6 are based on the semantics of
AspectScheme by Dutchyn and colleagues [19, 18]. AspectScheme is an aspect-
oriented extension of Racket (previously called PLT Scheme), implemented with
macros. We developed our own variant of AspectScheme with execution levels,
called LAScheme18, briefly described in Section 4.1. LAScheme is the original
artefact in which execution levels were first implemented and experimented with.
Like AspectScheme, LAScheme is implemented as a Racket language module.
LAScheme simplifies AspectScheme by removing advice execution join points
and by not exposing app/prim to users. Execution levels are modeled using
Racket parameters, which are thread- and continuation-safe dynamic bindings.

Computational contracts. This is the first and major experiment using LAScheme
so far. Computational contracts are an extension of the higher-order contracts
of Findler and Felleisen [23], in which contracts can not only check the input-
output behavior of functions and their higher-order parameters, but can also
check properties of the actual computation that derives from applying these
functions [36]. The kinds of properties that can be expressed as computational
contracts are very varied, for instance: not accessing the file system, not per-
forming side effects, applying (or not) a given function, following (or not) a
given protocol as expressed by a finite state machine, etc. For instance, one can
specify that a library function accepts as parameter any function provided that,
if it opens a file, it ought to close it before returning.

Computational contracts are integrated (and can be composed) with the
standard input-output contracts of Racket. Execution levels are helpful in this

18Available online: http://pleiad.cl/research/scope/levels

38

http://pleiad.cl/research/scope/levels

contract system, because they make it possible to differentiate contract compu-
tation from base computation and therefore to choose between different contract
semantics.

7.2. AspectScript

AspectScript is a language for expressive aspect-oriented programming in
JavaScript, which takes full advantage of the higher-order functional program-
ming features of JavaScript [47]. AspectScript was developed concurrently with
the execution levels proposal and is the second language to feature execution
levels, after LAScheme. In AspectScript, pointcuts and advices are standard
JavaScript functions—therefore, levels are crucial to avoid infinite regression.
In addition to execution levels, the language supports reentrancy control [39]—
which ensures that shifting down computation cannot provoke loops—and ex-
pressive scoping of aspects using scoping strategies [40, 41]. Aspect weaving
in AspectScript is similar to aspect weaving in LAScheme. However, because
JavaScript lacks a macro system, reification of join points is achieved through
an ad-hoc source-to-source transformation.

The implementation of levels in AspectScript differs only slightly from the
LAScheme implementation discussed previously. First, JavaScript does not sup-
port dynamic variables like Racket parameters; the current execution level is
implemented as a global variable that is mutated upon level shifting, within
a try/finally block to ensure that the current level is always consistent.
Second, instead of using a single aspect environment where all aspects reside,
AspectScript uses one aspect environment per level. At each join point, a quick
check is performed to determine if the upper-level environment is empty, in
which case reification is avoided altogether. The benefit of this implementation
scheme is relative to how much computation is performed in advices, and to the
way aspects are deployed at different levels.

Performance and Applications. The primary design goal of AspectScript is ex-
pressiveness, not performance. Apart from the per-level check for empty aspect
environment described above, no optimizations have been developed. In partic-
ular, partial evaluation techniques have not yet been applied. In a benchmark
consisting of transforming the jQuery library and running all its (CPU-intensive)
tests, Toledo et al. [47] report a 5.7x overhead just for generating join points
(3.4 million join points), and 13.3x overhead for a global aspect that matches
all join points (and just proceeds). This considerable overhead does not pre-
vent this first implementation of AspectScript to be applicable in certain non-
computationally-intensive scenarios, in particular with web-based, interactive
applications. AspectScript is used to implement the ZAC access control library
for JavaScript [49], a fully modular implementation of Java-like stack-based
access control [48], which has been proven secure [50].

7.3. AspectJ

To assess whether or not execution levels can be efficiently implemented, the
first author collaborated with Walter Binder and his group in order to address

39

the practical and efficient integration of execution levels in AspectJ, and to
study their application to black-box composition of dynamic analysis aspects.

7.3.1. Language Design and Implementation

AspectJ does not support dynamic deployment of aspects, as opposed to
LAScheme and AspectScript. Therefore, extending AspectJ with levels includes
augmenting the static specification of aspects with the levels at which they are
deployed. The weaver, called MAJOR2 [45], uses the standard AspectJ compiler
as a black-box; once aspects and application classes are compiled, MAJOR2
supports the static specification of level deployment. MAJOR2 also makes it
possible to deploy the same aspect instance at different levels.

The design of levels for AspectJ was guided by the fact that analysis aspects
have only augmentation advice (the original computation always executes) and
are independent (they do not write to fields that others may access) [34]. This
means that the default semantics of execution levels makes sense and that,
beyond deploying at different levels, there is no need for the explicit level-shifting
operators up and down in the language. Also, because dynamic analyses have
to deal with multi-threading, we extend the semantics of execution levels to
support multiple threads such that a thread runs at the level at which it is
created (threads initially started in the JVM run at level 0).

Levels are implemented using the technique of Polymorphic Bytecode Instru-
mentation (PBI) [32]. PBI makes it possible to combine different code versions of
a method (obtained by applying different transformations) into a single method
that starts with a dispatcher. The dispatch logic is responsible for routing ex-
ecution to the appropriate code version. For execution levels, the dispatcher is
the current execution level, and there is one code version per execution level.

Level shifting is introduced by modifying AspectJ-generated code in order
to ensure that pointcuts and advices are evaluated one level above the current
execution level. The current execution level is a thread-local property imple-
mented as an extra field on the Thread class, instead of using the standard
ThreadLocal class (for efficiency). As in AspectScript, level shifting is done
within a try/finally block to ensure consistency.

7.3.2. Application of AspectJ with levels

The target application domain of the experiments of AspectJ with levels is
that of dynamic analysis aspects. As discussed previously, execution levels are
particularly crucial for dynamic analysis, because these aspects usually have
very wide pointcuts, intercepting many join points across the complete system.
Consider a data race detection aspect called Racer [9], and an aspect for object
allocation profiling, called Prof. Racer intercepts all field accesses in order to
detect potential races; Prof intercepts all object creations. It turns out that it
is impossible to compose both aspects in AspectJ without running into infinite
loops; manually modifying them to exclude join points that trigger loops, it is
impossible to obtain consistent results.

As a matter of fact, there are multiple possible compositions of these analysis
aspects that make sense. Execution levels make it possible to support them, as

40

base program

Racer Prof

base program

Racer

Racer

base program

Racer

Prof

(a) (c) (d)
base program

Racer

Prof

(b)

L0

L1

L2

L0

L1

L2

L0

L1

L2

L0

L1

Figure 17: Different deployment and instantiation scenarios to compose two dynamic analysis
aspects. (from [45])

illustrated in Figure 17:

• Racer and Prof analyze the base program, without any interference. This
is the default, where both aspects are deployed at the same level 1 (a).

• Racer analyzes the base program while Prof profiles object allocation in
Racer. This is achieved by deploying Prof at level 2 (b).

• Racer analyzes the base program while Prof profiles object allocation in
both the base program and Racer. This is done by deploying the same
Prof instance at levels 1 and 2 (c).

• Racer can analyze the base program while another instance of itself (de-
ployed at level 2) analyzes the first one (d).

Being able to take analysis aspects developed by third parties and compose
them in such varied ways is definitely a great advantage over the current state
of the practice.

7.3.3. Performance

Early benchmarks of MAJOR2, using ad-hoc multiple versions of a method
instead of PBI (which was developed later) on the DaCapo suite showed an over-
head with execution levels of only 2 to 7% compared to the original AspectJ
version [45]. More recent experiments using the PBI implementation of MA-
JOR2 confirm that the performance is comparable to the manually optimized
case in AspectJ (where only lexical checks with within are used), incurring
slightly less overhead than AspectJ in certain cases. More interestingly, these
experiments report that using execution levels is much more efficient than using
control flow checks in AspectJ (x5.54 vs. x11.63 on average) [32]. These results
are extremely encouraging, especially considering the important gain in seman-
tic stability brought by levels (recall that none of the scenarios of Figure 17 can
be correctly obtained with AspectJ).

Finally, the formal results presented in Section 6.10 demonstrate an interest-
ing property of our AspectJ extension. The extension supports neither explicit

41

level shifting nor level-capturing objects, but it does support the possibility to
deploy statically the same aspect instance at several levels. This means that
programs in this extended AspectJ are by definition level-agnostic. They are,
therefore, free of aspect loops. Also, as discussed in Section 5, the AspectJ
extension is expressive enough to handle all the aspects from our two studies.

8. Conclusion

The issue of conflation in aspect-oriented programming has been latent since
its inception. Neither ad-hoc programming patterns nor primitive mechanisms
like app/prim and disable represent satisfactory solutions. This paper brings
to the fore the limitations of these approaches, and proposes a simple mechanism
to address conflation properly. By structuring computation in execution levels,
it is straightforward to avoid infinite regression in the most common cases.
The standard programmer need not even be aware that the runtime system is
based on execution levels. Only when fine-grained control is necessary, level-
shifting operators make it possible to deploy aspects at higher levels, or move
computation up or down, selectively.

On the conceptual side, we believe this work reconciles the (usually unwanted
or embarassing) “metaness” of aspects with the (usually unrecognized) “base-
ness” of runtime metaobject protocols. The key point lies in viewing metaness
not as an intrinsic/static property of a piece of program, but as a property of
execution flows: the same program element may be used at different levels.

We have developed both the formal foundations and the concrete applica-
tions of execution levels. A study of existing AspectJ code, both in a textbook
and in a large corpus of AspectJ projects, confirms the relevance of the problem
addressed by levels. The formalization, beyond giving confidence in the intu-
itive properties of levels, helps in understanding both which kind of loops are
avoided with execution levels, and which language features imply the possibility
of reintroducing these loops. We proved that programs that do not make use of
explicit level shifting are free of aspect loops. Our work also shows that levels
can be implemented under different flavors, with different efficiency/flexibility
tradeoffs. The AspectJ implementation is very competitive with respect to per-
formance, while covering most practical usages.

The main venue for future work lies in exploring whether the strictly layered
architecture proposed here is sufficient to deal with aspect visibility require-
ments found in practice. Initial elements of response can be found elsewhere,
where a more flexible of computational membranes is explored [46, 21].

Acknowledgments. We thank: Gregor Kiczales for feedback on this topic and proposal; Paul

Leger and Rodolfo Toledo for the discussions related to reentrancy and levels in AspectScript;

Walter Binder and his group for the work on implementing levels in AspectJ and applying

them to dynamic analyses; Christophe Scholliers for the work on computational contracts;

and the reviewers of the Scheme Workshop 2009, AOSD 2010, and this journal, for their

constructive and inspiring comments.

42

References

[1] Danilo Ansaloni, Walter Binder, Alex Villazón, and Philippe Moret. Parallel
dynamic analysis on multicores with aspect-oriented programming. In AOSD
2010 [2], pages 1–12.

[2] Proceedings of the 9th ACM International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2010), Rennes and Saint Malo, France, March 2010.
ACM Press.

[3] Proceedings of the 10th ACM International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2011), Porto de Galinhas, Brazil, March 2011. ACM
Press.

[4] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview
of CaesarJ. In Transactions on Aspect-Oriented Software Development, volume
3880 of Lecture Notes in Computer Science, pages 135–173. Springer-Verlag,
February 2006.

[5] AspectJ Team. The AspectJ programming guide.
http://www.eclipse.org/aspectj/doc/released/progguide/, 2003.

[6] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittam-
palam, and Julian Tibble. abc: an extensible AspectJ compiler. In Transactions
on Aspect-Oriented Software Development, volume 3880 of Lecture Notes in Com-
puter Science, pages 293–334. Springer-Verlag, 2006.

[7] Christoph Bockisch, Somayeh Malakuti, Mehmet Akşit, and Shmuel Katz. Mak-
ing aspects natural: events and composition. In AOSD 2011 [3], pages 285–300.

[8] Eric Bodden, Florian Forster, and Friedrich Steimann. Avoiding infinite recursion
with stratified aspects. In Proceedings of Net.ObjectDays 2006, Lecture Notes in
Informatics, pages 49–54. GI-Edition, 2006.

[9] Eric Bodden and Klaus Havelund. Racer: Effective Race Detection Using As-
pectJ. In International Symposium on Software Testing and Analysis (ISSTA),
pages 155–165, Seattle, WA, USA, July 2008. ACM Press.

[10] Nelio Cacho, Fernando Castor Filho, Alessandro Garcia, and Eduardo Figueiredo.
Ejflow: taming exceptional control flows in aspect-oriented programming. In Pro-
ceedings of the 7th international conference on Aspect-oriented software develop-
ment, AOSD ’08, pages 72–83, New York, NY, USA, 2008. ACM.

[11] Shigeru Chiba, Gregor Kiczales, and John Lamping. Avoiding confusion in
metacircularity: The meta-helix. In Proceedings of the 2nd International Sympo-
sium on Object Technologies for Advanced Software (ISOTAS’96), volume 1049
of Lecture Notes in Computer Science, pages 157–172. Springer-Verlag, 1996.

[12] Curtis Clifton and Gary T. Leavens. MiniMAO1: An imperative core language for
studying aspect-oriented reasoning. Science of Computer Programming, 63:312–
374, 2006.

43

[13] Roberta Coelho, Awais Rashid, Arndt von Staa, James Noble, Uirá Kulesza, and
Carlos Lucena. A catalogue of bug patterns for exception handling in aspect-
oriented programs. In PLoP ’08: Proceedings of the 15th Conference on Pattern
Languages of Programs, pages 1–13, New York, NY, USA, 2008. ACM.

[14] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich. As-
pectML: A polymorphic aspect-oriented functional programming language. ACM
Transactions on Programming Languages and Systems, 30(3):Article No. 14, May
2008.

[15] Olivier Danvy and Karoline Malmkjaer. Intensions and extensions in a reflec-
tive tower. In Proceedings of the 1988 ACM Conference on Lisp and Functional
Programming, pages 327–341, Snowbird, Utah, USA, July 1988. ACM Press.

[16] Marcus Denker, Mathieu Suen, and Stéphane Ducasse. The meta in meta-object
architectures. In Proceedings of TOOLS Europe, Lecture Notes in Business and
Information Processing, Zurich, Switzerland, July 2008. Springer-Verlag.

[17] Jim des Rivières and Brian C. Smith. The implementation of procedurally re-
flective languages. In Proceedings of the Annual ACM Symposium on Lisp and
Functional Programming, pages 331–347, August 1984.

[18] Christopher Dutchyn. Dynamic Join Points: Model and Interactions. PhD thesis,
University of British Columbia, Canada, November 2006.

[19] Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi. Semantics
and scoping of aspects in higher-order languages. Science of Computer Program-
ming, 63(3):207–239, December 2006.

[20] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engi-
neering with PLT Redex. MIT Press, 2009.

[21] Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. Taming aspects with monads
and membranes. In Proceedings of the 12th Workshop on Foundations of Aspect-
Oriented Languages (FOAL 2013), pages 1–6, Fukuoka, Japan, March 2013. ACM
Press.

[22] Ismael Figueroa and Éric Tanter. A semantics for execution levels with excep-
tions. In Proceedings of the 10th Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2011), pages 7–11, Porto de Galinhas, Brazil, March 2011.
ACM Press.

[23] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order func-
tions. In Proceedings of the 7th ACM SIGPLAN International Conference on
Functional Programming, pages 48–59, Pittsburgh, PA, USA, 2002. ACM Press.

[24] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques Noyé.
EScala: modular event-driven object interactions in Scala. In AOSD 2011 [3],
pages 227–240.

[25] Raffi Khatchadourian, Phil Greenwood, Awais Rashid, and Guoqing Xu. Point-
cut rejuvenation: Recovering pointcut expressions in evolving aspect-oriented
software. In International Conference on Automated Software Engineering (ASE
2009), pages 575–579, Auckland, New Zealand, November 2009. IEEE/ACM.

44

[26] Gregor Kiczales. Towards a new model of abstraction in software engineering. In
Proceedings of the IMSA 92 Workshop on Reflection and Metalevel Architectures.
Akinori Yonezawa and Brian C. Smith, editors, 1992.

[27] Gregor Kiczales. Personal communication, May 2009.

[28] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Meta-
object Protocol. MIT Press, 1991.

[29] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold. An overview of AspectJ. In Jorgen L. Knudsen, editor, Proceed-
ings of the 15th European Conference on Object-Oriented Programming (ECOOP
2001), number 2072 in Lecture Notes in Computer Science, pages 327–353, Bu-
dapest, Hungary, June 2001. Springer-Verlag.

[30] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Press, 2003.

[31] Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A compilation
and optimization model for aspect-oriented programs. In G. Hedin, editor, Pro-
ceedings of Compiler Construction (CC2003), volume 2622 of Lecture Notes in
Computer Science, pages 46–60. Springer-Verlag, 2003.

[32] Philippe Moret, Walter Binder, and Éric Tanter. Polymorphic bytecode instru-
mentation. In AOSD 2011 [3], pages 129–140.

[33] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying aspect- and object-
oriented language design. In Proceedings of the 27th International Conference on
Software Engineering (ICSE 2011), pages 59–68, St. Louis, MO, USA, May 2005.
ACM Press.

[34] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification system
and analysis for aspect-oriented programs. In Proceedings of the 12th ACM Sym-
posium on Foundations of Software Engineering (FSE 12), pages 147–158. ACM
Press, 2004.

[35] Martin P. Robillard and Gail C. Murphy. Designing robust java programs with
exceptions. SIGSOFT Softw. Eng. Notes, 25:2–10, November 2000.

[36] Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. Computational
contracts. In Scheme and Functional Programming workshop, 2011.

[37] Brian C. Smith. Reflection and semantics in a procedural language. Technical
Report 272, MIT Laboratory of Computer Science, 1982.

[38] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner. Types
and modularity for implicit invocation with implicit announcement. ACM Trans-
actions on Software Engineering and Methodology, 20(1):Article 1, June 2010.

[39] Éric Tanter. Controlling aspect reentrancy. Journal of Universal Computer Sci-
ence, 14(21):3498–3516, 2008.

[40] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In Proceedings
of the 7th ACM International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2008), pages 168–179, Brussels, Belgium, April 2008. ACM Press.

45

[41] Éric Tanter. Beyond static and dynamic scope. In Proceedings of the 5th ACM
Dynamic Languages Symposium (DLS 2009), pages 3–14, Orlando, FL, USA,
October 2009. ACM Press.

[42] Éric Tanter. Higher-order aspects in order. In Scheme and Functional Program-
ming Workshop, Boston, MA, USA, August 2009.

[43] Éric Tanter. Execution levels for aspect-oriented programming. In AOSD 2010
[2], pages 37–48.

[44] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario Südholt.
Scoping strategies for distributed aspects. Science of Computer Programming,
75(12):1235–1261, December 2010.

[45] Éric Tanter, Philippe Moret, Walter Binder, and Danilo Ansaloni. Composi-
tion of dynamic analysis aspects. In Proceedings of the 9th ACM SIGPLAN
International Conference on Generative Programming and Component Engineer-
ing (GPCE 2010), pages 113–122, Eindhoven, The Netherlands, October 2010.
ACM Press.

[46] Éric Tanter, Nicolas Tabareau, and Rémi Douence. Taming aspects with mem-
branes. In Proceedings of the 11th Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2012), pages 3–8, Potsdam, Germany, March 2012. ACM
Press.

[47] Rodolfo Toledo, Paul Leger, and Éric Tanter. AspectScript: Expressive aspects
for the Web. In AOSD 2010 [2], pages 13–24.

[48] Rodolfo Toledo, Angel Núñez, Éric Tanter, and Jacques Noyé. Aspectizing
Java access control. IEEE Transactions on Software Engineering, 38(1):101–117,
Jan./Feb. 2012.

[49] Rodolfo Toledo and Éric Tanter. Access control in JavaScript. IEEE Software,
28(5):76–84, Sept./Oct. 2011.

[50] Rodolfo Toledo and Éric Tanter. Secure and modular access control with aspects.
In Jörg Kinzle, editor, Proceedings of the 12th International Conference on Aspect-
Oriented Software Development (AOSD 2013), pages 157–170, Fukuoka, Japan,
March 2013. ACM Press.

[51] Alex Villazón, Walter Binder, Philippe Moret, and Danilo Ansaloni. Comprehen-
sive aspect weaving for Java. Science of Computer Programming, 76(11):1015–
1036, November 2011.

[52] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: a
non-reflective description of the reflective tower. Lisp and Symbolic Computation,
1(1):11–37, 1988.

[53] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for ad-
vice and dynamic join points in aspect-oriented programming. ACM Transactions
on Programming Languages and Systems, 26(5):890–910, September 2004.

[54] Chris Zimmermann. Advances in Object-Oriented Metalevel Architectures and
Reflection. CRC Press, 1996.

46

jp

pc

pointcut flow

adv

p1
p3

advice flow

p2

Figure 18: Pointcut and advice flows (in gray).

A. Proof that Level-Agnostic Programs do not (Aspect) Loop

In this section we prove that programs written in the default semantics of execution
levels, which we call level-agnostic programs because they do not use any level-shifting
mechanism explicitly, are free of aspect loops. To establish this theorem we first pre-
cisely define what we mean by aspect loops. Then we prove two lemmas: first, the level
preservation lemma states that when a term written in user-visible syntax reduces to a
value or an exception, the execution level and join point stack have not changed. And
second, we prove the level boundedness lemma, which specifies that during evaluation,
level shifting has a specific lower bound.

A.1. Aspect Loops

To precisely define what we mean by aspect loop, we introduce the notion of aspect
flow. This definition is based on the correspondence between the trace and the control
flow of program evaluation.

Trace Tree The trace tree of an expression e is a potentially infinite n-ary tree that
represents all function applications performed during reduction or evaluation of e. The
applications are registered in postorder in the tree, and the nodes can be labeled as
required. Given a node corresponding to a function application, all its subtrees are
considered part of the control flow of such application.

Last-Proceed Flow The last-proceed flow is defined as the control flow of any last-
proceed application. It corresponds to any trace tree whose root is the application of
a last-proceed function. Because last-proceed functions are created by the weaver, it
can be assumed that the root nodes are labeled properly.

Pointcut/Advice Flow The pointcut flow (resp. advice flow) of any application of
pc (resp. adv) is the difference between the trace tree of this application and the trace
tree of any last-proceed application. The difference consists in ignoring any subtree
that corresponds to a last-proceed flow. Again we assume the weaver properly labels
the root nodes in both cases.

Aspect flow The flow of an aspect 〈l, pc, adv〉 is comprised of the trace tree of its
pointcut flow and the trace tree of its advice flow.

47

jp

adv

p.toString()

adv

p.toString()

pc

pc

pc

Figure 19: Representation of con-
trol flow in an advice loop.

jp

adv

(f false)

pc

pc

 proceed

Figure 20: Representation of control flow in a
loop that is not an aspect loop.

Note that the above refers to any last-proceed application (recall Section 6.7),
for both pointcuts and advices. Because of higher-order programming patterns, it is
indeed possible to apply at any time a last-proceed that is unrelated to the currently-
intercepted join point. Figure 18 intuitively depicts an aspect flow, where several
applications of last-proceeds occur, where p1 = P JjpK, and p2 and p3 are last-proceeds
of join points different from jp. With the notion of aspect flow, we can now precisely
define what an aspect loop is:

Aspect loop An aspect loop is a loop that occurs due to an aspect seeing a join
point from its own aspect flow.

Similarly, we define a pointcut loop relative to a pointcut flow, and an advice loop
relative to an advice flow. Note that the examples of loops in Sections 2.1, 2.2 and
2.3 are indeed aspect loops: they all occur due to the aspect seeing a join point in
its aspect flow. To see this consider Figure 19, which depicts the situation of the
advice loop of Section 2.1. In contrast, recall the first example of Section 6.10, whose
situation is depicted in Figure 20 (in the figures • represents emission of a join point).

A.2. Level preservation

This lemma states that when a term written in user-visible syntax reduces to a
value or to an exception, the execution level and join point stack have not changed.
This property comes from the fact that the only user-visible expressions that can
change the current execution level or join point stack are: up, down, λn and jp. As
each of these constructs puts a placeholder to remember to go back to the original
level or join point stack when a value is computed, and because exception propagation
respects these placeholders, the result should not be surprising. If, on the contrary, we
allow any expression in e, then the lemma does not hold, as can be seen for instance
by considering the term (in-down 5).

Lemma A.1 (Level Preservation). Let e be an expression written in user-visible
syntax. For any configuration 〈l, J, e〉, if

〈l, J, e〉 ↪→∗ 〈l′, J ′, v〉 or 〈l, J, e〉 ↪→∗ 〈l′, J ′, (exn l′′ v)〉

48

where v is a value, then
l = l′ and J = J ′.

Proof By induction on the length of the reduction, with a case analysis on the first
rule. Because we restrict the possible terms appearing in e, the only rules that change
the level or the join point stack and can be executed at first in e are InUp, InDown,
AppShift and Weave.

• Each rule not mentioned above that can be applied at first does not change the
execution level nor the join point stack and produces a term e′ in user-visible
syntax. So the property holds directly by induction hypothesis.

• Rules InUp or InDown. As both cases are analogous, we only treat Rule InUp.

If rule InUp is used, we have that e = (up e′) and

〈l, J, (up e′)〉 ↪→ 〈(succ l), J, (in-up e′)〉.

By induction hypothesis, if the reduction results in a value

〈(succ l), J, e′]〉 ↪→∗ 〈(succ l), J, v〉.

Then, by context preservation and Rule OutUp it follows that

〈(succ l), J, (in-up e′)]〉 ↪→∗ 〈(succ l), J, (in-up v)]〉 ↪→ 〈l, J, v〉.

If the reduction results in an exception

〈(succ l), J, e′]〉 ↪→∗ 〈(succ l), J, (exn l′ v)〉.

Then, by context preservation and Rule OutUpEx it follows that

〈(succ l), J, (in-up e′)]〉 ↪→∗ 〈(succ l), J, (in-up (exn l′ v))]〉 ↪→ 〈l, J, (exn l′ v)〉.

• Rule AppShift. The initial configuration is of the form

〈l, J, (app/prim (λl
′
(x · · ·) e′) v′ · · ·)〉

which reduces to

〈l′, J, (in-shift(l) e′{v′ · · · /x · · · })〉.

By induction hypothesis, if the reduction results in a value

〈l′, J, e′{v′ · · · /x · · · }〉 ↪→∗ 〈l′, J, v〉.

Then, by context preservation and Rule Shift, the expression reduces to 〈l, J, v〉.
On the other hand, if the reduction results in an exception

〈l′, J, e′{v′ · · · /x · · · }〉 ↪→∗ 〈l′, J, (exn l′′ v)〉.

By context preservation and Rule ShiftEx, the expression reduces to 〈l, J, (exn l′′ v)〉.
• Rule Weave. We have that e = (jp j) for some join point j and

〈l, J, jp j〉 ↪→ 〈l, j + J, (in-jp (up (app/prim W J|A |KJ v · · ·)))〉.

By induction hypothesis

〈l, j + J, (up (app/prim W J|A |KJ v · · ·))〉 ↪→∗ 〈l, j + J, v〉.

Then, by context preservation and Rule OutJp it follows that

〈l, j + J, (in-jp v)〉 ↪→ 〈l, J, v〉.

Exception propagation through in-jp is similar to rule OutJp.

49

A.3. Level boundedness

Before stating the main lemma about level boundedness, we introduce the shifting
lower bound of a term e, noted ΩJeK, as the minimum level with which an instantiated
level-capturing function appearing in e is tagged. When a term does not contain any
instantiated level-capturing functions, its shifting lower bound is∞, which means that
no level shifts are possible. The idea behind this notion is to keep track of the minimum
level that can be reached by applying an instantiated level-capturing function in e.

Formally, ΩJeK is defined by induction on e as

• ΩJ(λl(x · · ·)e)K = min(l,ΩJeK),

• ΩJ(λ•(x · · ·)e)K = ΩJeK,

• ΩJ(jp dljp, k, vλ, v · · ·e)K = ΩJ(vλv · · ·)K,
• ΩJC[e1, . . . , en]K = min(ΩJe1K, . . . ,ΩJenK) for any other n-ary constructor C. In

particular try-with is considered a binary constructor,

• ΩJCK =∞ for any constant term C.

Note that a non-instantiated level-capturing function (λ•) does not alter the shifting
lower bound of a term as it will be instantiated at the current execution level and so
will not be able to shift the execution level down. We extend the notion of shifting
lower bound to the global aspect environment pointwisely by

ΩJ(vpc, vadv) :: A K = min(ΩJvpcK,ΩJvadvK,ΩJA K).

Level-agnostic expression An expression e is level-agnostic if it is a user-visible
term that does not contain down, up, or level-capturing functions.

Note that level-agnostic terms have infinite shifting lower bound because by defi-
nition they do not contain any instantiated level-capturing function.

We are interested in proving the result on level-agnostic expressions, because they
correspond to terms written by a programmer who is unaware of levels. However,
during weaving these terms are rewritten in a way that introduces both up and instan-
tiated level-capturing functions (due to the last-proceed). We therefore first formulate
the lemma for woven level-agnostic terms, i.e. level-agnostic terms that can contain
both up and instantiated level-capturing functions. We then specialize the result to
level-agnostic terms.

Lemma A.2 (Level Boundedness). Let e be a woven level-agnostic expression. We
assume that for every aspect 〈l, vpc, vadv〉 contained in A , vpc and vadv are also woven
level-agnostic. For any configuration 〈l, J, e〉, if

〈l, J, e〉 ↪→∗ 〈l′, J ′, e′〉 then l′ ≥ min(l,ΩJeK,ΩJA K).

Proof By induction on the length of the reduction, with a case analysis on the first
rule.

• Rules OutUp, InDown, OutDown or Shift are omitted by hypothesis.

• Rules AppPrim or OutJp. Direct by induction hypothesis.

• Rule App. Direct by induction hypothesis, using the fact that

ΩJ((λ(x · · ·) e) v · · ·)K = ΩJ(jp d(succ l), call, (λ(x · · ·) e), v · · ·e)K.

50

• Rule Capture. Direct by induction hypothesis, using the fact that

min(l,ΩJ(λ•(x · · ·) e)K) = min(l,ΩJ(λl(x · · ·) e)K.

• Rule InUp: we have that e = (up e0) and

〈l, J, (up e0)〉 ↪→ 〈(succ l), J, (in-up e0)〉.

Two cases must be considered: (i) Either the final reduction stays inside in-up,
that is e′ = (in-up e′′) and

〈(succ l), J, (in-up e0)〉 ↪→∗ 〈l′, J ′, (in-up e′′)〉.

By induction hypothesis (and context preservation), l′ ≥ min((succ l),ΩJe′K,ΩJA K),
which is more than we need.
(ii) Or the final reduction concerns in-up, that is

〈(succ l), J, (in-up e0)〉 ↪→∗ 〈l′, J ′, v〉.

In that case, l = l′ by Lemma A.1.

• Rule Deploy: direct by induction hypothesis, using the fact a woven level-
agnostic term can only deploy woven level-agnostic aspects.

• Rule Weave: it must hold that e = (jp j) for some join point j and, by letting
eW be (up (app/prim W J|A |KJ v · · ·)), we have

〈l, J, jp j〉 ↪→ 〈l, j + J, (in-jp eW)〉.

Two cases must be considered: (i) Either the final reduction stays inside in-jp,
that is e′ = (in-jp e′′) and by induction hypothesis, using the fact that each
advice is woven level-agnostic and therefore eW is a woven level-agnostic expres-
sion, we have

〈l, j + J, (in-jp eW)〉 ↪→∗ 〈l′, j + J, in-jp e′〉

with
l′ ≥ min(l,ΩJ(in-jp eW)K).

We conclude using the fact

ΩJ(in-jp eW)K = min(l,ΩJjp jK,ΩJA K)

because the only new instantiated level-capturing function P JjK in eW is at level
l. (ii) Or the final reduction concerns in-jp, that is

〈(succ l), J, (in-jp eW)〉 ↪→∗ 〈l′, J ′, v〉.

In that case, l = l′ by Lemma A.1.

• Rule AppShift: The initial configuration is of the form

〈l, J, (app/prim (λl0(x · · ·) e0) v · · ·)〉

which reduces to

〈l0, J, (in-shift(l) e0{v · · · /x · · · })〉.

51

Two cases must be considered: (i) Either the final reduction stays inside in-shift(l),
that is e′ = in-shift(l) e′′ and

〈l0, J, (in-shift(l) e0{v · · · /x · · · })〉 ↪→∗ 〈l′, J ′, (in-shift(l) e′′)〉.

Then by induction hypothesis, l′ ≥ min(l0,ΩJe0{v · · · /x · · · }K,ΩJA K). We con-
clude using

ΩJ(app/prim (λl0(x · · ·) e0) v · · ·)K = min(l0,ΩJe0{v · · · /x · · · }K).

(ii) Or the final reduction concerns in-shift(l) so e′ is a value and l = l′ by
Lemma A.1.

Observe that to reach an execution level smaller that the starting execution level
(that is l′ < l) it must be the case that e′ is in the control flow of a level-capturing
function application. This can be easily checked by looking at the proof above and
noticing that no applicable rule but AppShift makes the current level go down.

Theorem 6.1 (No Aspect Loops). Let e be a level-agnostic term. If all aspects in
A are also level-agnostic, the reduction of e is free of aspect loops.

Proof An aspect deployed at level (succ l) can only see join points generated at level
l. Thus, using Lemma A.2, this means that an aspect can see its own join points only
inside a level-shifting function application. But the only level-shifting functions that
appear during the execution of e are last-proceed functions, whose applications are by
definition not part of the aspect flow.

A.4. Extension to references

Lemma A.2 can be transposed to a language with references in a straightforward
way. We first extend pointwisely the notion of shifting lower bound to the store s by
posing

ΩJsK = min
α∈L

ΩJs(α)K

where L is the set of locations of the store. We then weaken the statement of the
lemma by asserting that

l′ ≥ min(l,ΩJeK,ΩJA K,ΩJsK),

which means that the execution level can be shifted down also by instantiated level-
capturing functions present in the store. The proof is the same, the rules for reference
assignment and dereferencing behave in the same way than rules Deploy and Weave.
Theorem 6.1 requires that every function in the store is level-agnostic.

52

	Introduction
	A Plethora of Issues
	Advice Loops
	Pointcut Loops
	Confusion all Around
	Visibility (of) Aspects
	Concurrency
	Exception Handling

	From Conflation To Stratification
	Lessons Learned from Aspect-Oriented Programming
	Lessons Learned from Meta-Object Protocols
	Towards Execution Levels for AOP

	Execution Levels for Aspect-Oriented Programming
	LAScheme Basics
	Aspects and Levels: Default
	Shifting Execution Levels
	Capturing Execution Levels
	Exploiting Execution Levels
	Exception Conflation
	Summary

	Evaluation of Execution Levels in AspectJ Programs
	Study of a Textbook
	Study of a Corpus of Applications

	Semantics and formal properties
	Core Language
	Execution Levels
	Join Points
	Aspects and Deployment
	Primitive applications
	Level-capturing functions
	Weaving
	Level-Aware Exceptions
	Executable Model
	Avoiding Loops with Execution Levels

	Execution Levels in Practice
	LAScheme
	AspectScript
	AspectJ
	Language Design and Implementation
	Application of AspectJ with levels
	Performance

	Conclusion
	Proof that Level-Agnostic Programs do not (Aspect) Loop
	Aspect Loops
	Level preservation
	Level boundedness
	Extension to references

