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1. Introduction

What follows is a formalization of a gradual polymorphic effect system, which works as a privilege checking system. This
system combines the work of Lightweight Polymorphic Effects (hereafter, LPE) [5]] and a Theory of Gradual Effect Checking
(hereafter, TGE) [1] to support gradual effects and effect polymorphism. Like in TGE, the system is a generic effect system,
following Marino and Millstein [3]].

Section |2 describes the source language, including its syntax and static semantics. As is usual in accounts of gradually-
typed languages [} 2| |6], the dynamic semantics is given indirectly through a translation to an internal language. The internal
language itself is presented in Section [3] and the translation from source programs to programs in the internal language is
formalized in Section[d} Section [5]gathers auxiliary definitions. Finally, the proof of type soundness is presented in Section 6]

2. Source Language
We now the core language with integrated support for gradual effect checking and effect polymorphism. The language is
inspired by TGE and LPE, is call Gradual Polymorphic Effect System (GPES).

2.1 Syntax
¢ € Priv, £ € CPriv=PrivU {;}

® € PrivSet = P (Priv), = € CPrivSet = P (CPriv)
unit | (Az: T.e)T5T  Values

v =
e u= zlv|ee|lenZE Terms
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&

Figure 1. Syntax of the source language

Figure [I] presents the syntax of GPES. As in TGE, the language is parameterized on some finite set of privileges Priv for
a given effect domain. Subeffecting is a partial order on effect privileges, denoted ¢; <: ¢2. A consistent privilege, in CPriv,
can additionally be the unknown privilege ;. A consistent privilege set = is an element of the power set of CPriv, i.e. a set of
privileges that can include ;.

A value can either be unit or a function. The main difference with TGE is that functions are fully annotated, including
the type of the argument 77, the return type 75, the latent (consistent) privilege set =, and the relative effect variables z. A
term e can be a variable x, a value v, an application e e, or an effect ascription e :: =. A type is either Unit or a function type

(z:T) % T'. Although functions have only one argument, the relative effect variables = can include variables defined in the

surrounding lexical context.
For instance, in a context I' where f is defined, a function that takes a function g as argument, performs some output, and
applies both f and g, can be defined as follows:

(Ag: Unit—Unit . ...)Prit{@outputhi{f.e}

2.2 Static Semantics

The typing rules are presented in Figure[2]

Rule [Var] is self explanatory. Rule [Fn] typechecks the body of the function using the annotated privilege set =; and relative
effect variables T7, and verifies that the type of the body 7" is a consistent subtype of the annotated return type T5.

To type an effect ascription (rule [Eff]), the ascribed privilege set is used to typecheck the inner expression. This rule is the
same as in TGE save for the polymorphic context and the fact that is uses consistent subcontainment to check that the ascribed
privilege set is valid in the current context.

Rule [App] is an adaptation of the corresponding TGE typing rule to support relative effects. The sub-expressions e; and
e are typed using adjusted privilege sets (according to each domain). check verifies that the application is allowed with the
given permissions =. A subtlety is that if the invoked function is effect-polymorphic, its latent effects are not only =1, but also
include the latent effects of the relative effect variables of the functions in % that are not already present in the polymorphic
context T.

These additional latent effects are computed by the auxiliary function latentr.z(T") defined in [4]]. The function needs access
to both the type environment I'" and the polymorphic context T to lookup the types of the relative effect variables. An extra
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Figure 2. Type rules of the source language

subtlety is that the type of each f in J\Z is obtained in an environment in which the argument y has type 75, not 7. This is to
account for effect polymorphism: the actual latent effects of the argument come from es.

Rule [AppP] is a new rule for the application of functions that are the parameter of an enclosing effect-polymorphic function
(i.e. f{ € T). The difference between [AppP] and [App] is very subtle: the typing rule [AppP] does not need to check if the
latent effects of the function being applied are consistently subcontained in the set of privileges of the enclosing application.
The reason is that in [AppP] the application is being polymorphic on f, meaning that the application is allowed to produce any
effect that f may produce.

Subtyping and Consistent Subtyping The typing rules rely on the definitions of subtyping and consistent subtyping presented
in Figure The judgement of the consistent subtyping rules has the form I' - 77 <: T where type T” is consistent subtype of
T'. Rules [CSrefl] and [CSTrans] represent the reflexivity and transitivity rules respectively. I' is used to calculate the privilege
sets of the relative effect variables of function types. [CSFun] represents the rule for consistent subtyping between function

types. Let us remember that the latent privilege set of a function typed 77 —+ T5 consist of two components: the privilege set
xr

Z, and the latent effects of its relative effect variables 7. For this, rule [CSFun] uses the relation (Z',2’) 3 (=, T) to compare
the effect of two function types. The privilege set =’ must be consistently contained in = and each relative effect variable

2’ € 2 is either contained in the relative effect variables Z, or its type I'(z') = (y: T,) —% T}, conforms to (Ey,79) 2 (E,7)
]

~

recursively.

Rules [SRefl], [STrans], [SFun] represent the subtyping rules which are identical to the consistent subtyping rules but using
subtyping and subcontained operators.

The auxiliary metafunction [z /2]T replaces the relative effect variable 2’ with x in type 7.

3. Internal Language

GPES leaves many aspects of dynamic privilege checking implicit. This section introduces an internal language, GPESIL, that
makes these details explicit. GPES’s semantics are then defined by type-directed translation to GPESIL (Section [)).

3.1 Syntax

GPESIL is structured much like GPES but elaborates several concepts as shown in Figure [4]

Following TGE, the internal language includes a new term Error to denote runtime effect check failures. The has
operation checks for the availability of particular privilege sets at runtime, and the restrict operation restricts the privileges
available while evaluating its subexpression.

In addition, in order to support effect polymorphism and the cast compilation approach described later, the internal language
introduces a number of application operators. First is a polymorphic application operator o, which is used when translating
polymorphic applications f ep in the source language, to ey o eo (when casts are inserted), in order to not “forget” that the
application is effect-polymorphic. Second, new application operators are introduced to denote primitive applications that are
introduced internally as part of the eta-expansion performed during translation. These applications should not interfere with
effect checking (in TGE, where casts are not compiled away but interpreted at runtime, the dynamic semantics use a direct
substitution to avoid checking wrapper applications; see Rule [E-Cast-Fn] in [1]]). Because once again we need to be able to
distinguish effect-polymorphic applications, two new primitive operators are introduced: plain primitive application ep and
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Figure 3. Subtyping and Consistent subtyping rules

polymorphic primitive application . Note that the I" in er is only used statically as explained in Section 4] At runtime both
primitive applications have the same meaning and the I' can be erased.

Finally, GPESIL adds the corresponding frames to represent evaluation contexts in the small-step semantics. One for
applications and polymorphic applications f. Another frame for errors g. And last, a frame for the primitive operations h.

Q- g o<

= unit |(\z: T .e)Ti57 Values

n= x|v|ee|leoe|ecore|ecoe|Error |has ®e|restrict Ze Terms

m= Unit|(z:7T) % T Types

x= Oe|vO|Ooe|voO Frames

x= f|h|has ®O|restrict ¢ Error Frames

m= epe|verd|Hec|vel Primitives Frames

Figure 4. Syntax of the internal language

3.2 Static Semantics

The type system of the internal language is presented in Figure [5] GPESIL mostly extends the source language with a few
critical differences.



In the internal language, effectful operations must have enough privileges to be performed. [IApp] and [IAppP] represent
the rules for application and polymorphic application. Both rules replace check with strict-check, consistent subtyping <: with
subtyping <: , and the consistent containment C: with containment C. Rule [IAppP] new applies to the new polymorphic
application operator o because polymorphic variables f may be casted during translation and therefore translated into new
expressions.

The primitive applications counterparts of rules [IApp] and [IAppP] rules are rules [[Aprm] and [IAprmP] respectively. The
major difference is that the primitive rules do not perform a strict-check given that they are internal artefacts introduced by
the translation, and therefore should be “transparent” for static effect checking. To calculate the latent effects of e, [[Aprm]
uses I' instead of T" to use the correct type of y. This is because incorrect types may be infered from I" during high-order cast
insertions (see Proposition 2). This way the latent effect computations will use the same type information when typechecking
primitive applications.

The restrict operator constrains its subexpression to be typable with a privilege set that is statically contained in the
union of its current privilege set and the latent effects of the relative variables . For example the body of a map function
that only produces the effects of its argument =1, can restrict its body to some privilege set smaller than =;, otherwise no
restrictions could be inserted.
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Figure 5. Type rules of the internal language

3.3 Dynamic Semantics

GPESIL’s dynamic semantics are presented in Figure [6] The evaluation judgement has the form ® I~ e — ¢/, meaning that e
reduces to €’ under the current privilege set ®. The dynamic operations that are inserted either restrict the current privilege set
(restrict ) or check the current privilege set for a gievn effect privilege (has ). These operations are inserted whenever the
unknown effect is used in a typing derivation, to enforce the corresponding dynamic checks. If an effect check fails, a runtime
effect error is raised.

The [EFrame], [EError] and [EFrameprim] are rules for reducing context frames f, g, and h respectively. The [EApp] and
[EAppP] describes how an application of a lambda with a value reduces to the body by replacing the variable x with the value
v. Both rules are guarded by a check. Just like [1], if this check fails, then the program is stuck; if programs never get stuck,
then any effectful operation that is encountered must have the proper privileges to run. Rules [EApprim] and [EApprimP] are
the rules for primitive applications and primitive polymorphic applications respectively. Both rules are identical save for the
operation symbol.

The [EHasT] rule reduces the expression e only if the checked privilege set ®’ is contained in the current privilege set. The
[EHasV] rule describes how a has operation applied to a value reduces to the same value (values do not produce effects).
In case the checked privilege set is not contained in the current privilege set, rule [EHasF] reduces to an Error which is
propagated using [EError]. The [ERst] reduces a restricted expression e using the maximal privilege set '/ that is subcontained
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Figure 6. Evaluation rules of the internal language

in the current privilege set ®. The maximal set it is computed using the function max as shown in Figure [8|(a direct adaptation
of the definition of TGE to account for subeffecting). The [ERstV] removes restrict on values.

4. Source to Internal Language Translation
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Figure 7. Transformation rules to the internal language

The dynamic semantics of GPES are defined by augmenting its type system to generate GPESIL expressions. The type-
directed elaboration judgement has the form Z;T';Z - e = ¢’: T where e is translated into ¢’. The translation uses static type
and effect information from the source program to determine where runtime checks must be inserted.

Most of this translation is straightforward. Rule [TApp] describes the non-polymorphic function application. There are two
main differences compared to [App]. First, a runtime check may be introduced using insert-has?, to determine whether the
statically-missing privileges in = to perform the application are available at runtime. This privilege set ® is obtained using the
metafunction A /dg@ed in [1]] and presented in Figure |8} which computes the minimal set of additional privileges needed to
safely pass the check verification. The metafunction insert-has? inserts a dynamic check for privileges only if the privilege set
® is not empty. Second, a higher-order cast may be introduced to ensure that e;’ has the proper type to accept e’ as argument.
A subtlety here is that the relative effects of e;’ must be taken into consideration when inserting the cast. The cast is compiled
at translation time as seen in Figure[§|and discussed further in Section [5|below.



Rule [TAppP] is the transformation rule for applications of functions that are the parameter of an enclosing effect-
polymorphic function. The compiled cast metafunction is inserted with a flag indicating to not insert dynamic checks for the
effects of f. Notice how [TAppP] inserts a cast by altering I' changing the effect information of f to be pure and polymorphic on
itself (recursive functions). This way, when the cast is inserted, restrict , has and the primitive applications will consider
f to be pure. As previously noted, the casted expression ey may loose the information about being a polymorphic function
application in the internal language, hence the application f e is transformed into an explicitly polymorphic application o.

5. Auxiliary Functions and Definitions
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Figure 8. Auxiliary functions and definitions used in the gradual polymorphic effect system

The auxiliary functions and definitions are presented in Figure [8| The latent metafunction calculates the latent effects of a
function type. It is the union of the concrete effect = and the latent effects of its relative effects i (analysing the relative effects
types defined in I).

The cast compilation metafunction {-)§ inserts a cast only if static subtyping does not hold. The first novelty with respect
to TGE is the boolean variable ¢, which indicates the cast is for non-polymorphic applications (¢ = true) or polymorphic
applications (¢ = false). When the cast is for non-polymorphic application, the cast must include the has operator and must
perform a primitive application inside the eta-abstraction (do not check for application privileges). On the other hand if the cast
is for polymorphic applications the cast must not include the has check and must perform a primitive polymorphic application



inside the eta-abstraction (do not check for application privileges and do not check that the privilege set of the method is
contained in the current privilege set).

The second novelty is that casts are transformed away during translation, in contrast to TGE where casts are new forms
dealt with in the runtime semantics. For this, if the casted expression e is not a variable, it must be first reduced to a value and
then perform the has and restrict operations. Therefore, the casted expression e is applied to a new lambda. In case the
expression e is a variable, no primitive application must be inserted. Notice that each case of the cast compilation metafunction
changes the variabe context I' so that it includes all free variables needed to compute the latents effects. Also in case of a cast
from/to a polymorphic function, I' is modified so it considers the effects of its argument as the check performed in [App] and
[Tapp].

The general restrict/has scheme is the same as in TGE, except for two crucial differences to regain the flexibility of
effect polymorphism. First, the has check is conditioned to the check flag ¢ as previously mentioned. Second, the inserted
restrict and has must include the latent effects of the relative effect variables of both types, because they represent the
maximal privilege set that x5 and x; may produce. This adaptation of restrict/has corresponds to the flexibility of effect
polymorphism: applying a function on which the expression is polymorphic is considered to not produce any effect (so, no
has), but the permitted effects are bounded by the declared latent effects of that function (so, a richer restrict). Finally, the
cast on the return type always inserts a dynamic check (there is no polymorphism on return values). In the translation rule
[TApp], the higher-order cast starts with the check flag set to true, because the application is not polymorphic, while in rule
[TAppP], the outer check flag is false.

The insert-has? metafunction only inserts a has if ® is not empty. A calculates the minimal static privilege set necessary
to safely pass the check function. mins and max metafunctions calculates the minimal and maximal privilege set over a set of
privilege set. strict-check(Z) is defined as safely pass the check function for all concrete privilege set ® contained in v(=).
Finally the < operator is defined as consistent subcontainment between two concrete privilege sets.

6. Type Soundness

This section establishes type soundness of GPES. First we prove soundness of GPESIL (Section [6.I)) through progress
(Section [6.1.1)) and preservation (Section [6.1.2)). Then we prove that the translation from GPES to GPESIL preserves typing
(Section[6.2)), thereby establishing type soundness for GPES. Auxiliary lemmas and propositions used in the proofs of the main
theorems are proven in Section

6.1 Soundness of Internal Language

6.1.1 Progress

Theorem 1. (Progress).
Suppose Z;(0; ) - e: T. Then either e is a value v, an Exrror, or ® - e — €’ for all privilege sets ® € v(Z).

Proof. By structural induction over derivations of Z; 0; T - e: T

Case ([IUnit] and [IFn]). Both unit and (A\z: Ty . €)12=1%1 are values.
Case ([IVar]). This case cannot happen by hypothesis.
Case ([IError]). Error is an Error.

Case ([IRst]). By induction hyphothesis, e is either

* A value, in which case [ERstV] can be applied to restrict =’ e.

* An error, in which case [EError] can be applied with g = restrict Z' [
V' € y(Z),d' e — ¢, in particular for the ' in the premise of [ERst], thus [ERst] can be applied. This ®'' exists
because Z' < = and the polymorphic context is empty. Thus, 30" € v(Z') such that ' C: P.

Case ([IHas]). . By induction hypothesis, e is either

* a value, in which case [EHasV] applies.

* An error in which case rule [EError] applies with g = has & [.

VP € y(PUE), D F e — €. Wealso know that for any ® € v(E), either
» &' &: . In this case, rule [EHasF] applies.



» &' C: P. In this case, since ' C: ® and O € y(E), then also ® € ~(P' UE). Thus by hypothesis, ® - e — €' and thus
we can apply rule [EHasT].

Case ([IAprmP]). This case cannot happen by hypothesis.
Case ([IApp]). By induction hypothesis, e; is either
* An Error, in which case [EError] applies with g = U e.
. VE/\'E ”y(aajfl_lgt(E)), o F ey — ei'. By Theorem m since & € ~(E), adjust(®) € ~(adjust(Z)) and thus
adjust(®) - e; — ey’ and rule [EFrame] can be applied.

* A value. By Lemmathen e1 = (A\x: Ty . e)T2=0®
At the same time, also by induction hyphotesis, es is either:

* An Error, in which case [EError] applies with g = v [.

VP’ € y(adjust(Z)), D’ F es — eo’. In which case by analogous arguments to the same case for ey, rule [EFrame]
can be applied.

* A value. By typing premises, also strict-check(E). By definition of strict-check, then Vo € v(Z).check(®), and thus for
any ® € v(E) rule [EApp] can also be applied.

Case ([IAppP)). By induction hypothesis, ey is either

* An Error, in which case [EError] applies with g = O e.

V' € 'y(azijj\lgt(E)), @ + e; — ey’. By Theorem since & € ~(E), adjust(®) € ~v(adjust(E)) and thus
agj\l_lgt(@) Fe1 — e1’ and rule [EFrame] can be applied.

* A value. By Lemma|l5|then ey = (\x: Ty . e) 2551
At the same time, also by induction hyphotesis, es is either:

* An Error, in which case [EError] applies with g = v o [.

* VO’ € y(adjust(Z)), D’  ea — ey’. In which case by analogous arguments to the same case for ey, rule [EFrame]
can be applied.

* A value. By typing premises, also strict-check(ZE). By definition of strict-check, then V® € ~(E).check(®), and thus for
any ® € v(E) rule [EAppP] can also be applied.

Case ([IAppprm]). By induction hypothesis, ey is either

* An Error, in which case [EError] applies with g = [ e.

VP € v(E),D' e — ey’ Since ® € v(E) and thus O - e; — e’ and rule [EFrameprim] can be applied.

* A value. By Lemmathen e1 = (A\x: Ty . e)T2=0®

At the same time, also by induction hyphotesis, es is either:
* An Error, in which case [EError] applies with g = v L.
VO € y(2), D' F ex — es'. In which case by analogous arguments to the same case for eq, rule [EFrameprim] can be
applied.

= A value. In this case [EAppprim] can be applied.

6.1.2 Preservation
Theorem 2 (Preservation). If ;15T e: T, and P+ e — € for ® € v(2), then Z; T2 e : T and T' <: T

Proof. By structural induction over the typing derivation and the applicable evaluation rules.

Case ([IFn], [IUnit], [IVar], [IAppP], [[AprmP] and [IError]). These cases are trivial since there is no rule in the operational
semantics that takes these expressions as premises to step.

Case ([IApp] and [EFrame] with f = O t). Thanks to Theorem (16| . we can use the induction hypothesis to establish that

adJust( 0T b oe: T —) 15" and T’ H—) Ty <: T ;% T5'. By definition of subtyping, Ty <: Ty’ and
Y’ Y’
therefore Ty <: Ty'. By definition of latent effect and subtyping |=;’ U lat(T,y/, )| C: |21 U lat(T",y,T)| and therefore

|21 Ulat(I",y', T)| C: |Z|. Thus we can reuse rule [1App] to establish that Z;1; T - ey’ ea: T5" and we know that T <: Ts.



Case ([IApp] and [EFrame] with f = o O). By Theorem we can use the induction hypothesis to establish that
adjust(E); ;T F ex: T and T’ <: Ts.

Since To <: T4, then also Ty’ <: Ty and we can reuse rule [1App] to establish that Z;T;T - ey ex’: T5.

Case ([IApp] and [EApp]). In this case ey = (A\y: Ty . €)T3=1Y and =1; T, y: Ty; 5+ e: Ts.

Thus by Theorem Eu ;g E [e2/y] e Ts, with Ts' <: Ts. Then by Prop()sition STk [e2fyle: Ts/, T’ <: Ts.

C: / / / 124
Case ([IHas] and [EHasT]). e = has ® ¢'. Therefore, application of [EHasT] takes the form USRS Pre—e

®' -has P e’ — has ®¢”’
with @' € v(2).

Since ® C: O/, then also D" € v(® U E) and then by induction hypothesis ® UZ;T;T F e’ T, T' <: T. We can then use
rule [IHas] to establish that Z;T; T  has ® e'': T’ too.

Case ([[Has] and [EHasV]). ¢ = has ®v. ;T F e: T and ® + has ® v — v. By induction hypothesis (P U Z); ;T -
v: T. Using Lemma[I7]we can conclude that Z;T';T - v: T.

Case ([IHas] and [EHasF]). Trivial by using rule [IError]

Case ([IRst] and [ERst]). Since by rule [ERst] &' € v(Z1), we can use the induction hypothesis to establish that E1;T;T F
e T, T" <:T. Then we reuse rule [IRst] to establish that Z;1; T F restrict Z;¢': T

Case ([IRst] and [ERstV]). By induction hypothesis and using Lemma using the same argument of [IHas] and [EHasV].

Case ([IAprm] and [EFrameprim] with h = Uerse). We can use the induction hypothesis to establish that =;1';x F

er’: (y: TY) = T3 and (y: T)') == T3’ <: (y: T1) —= Ts. By definition of subtyping, Ty <: T\' and therefore
Y’ y' v o

Ty <:Ti'. By definition of latent effect and subtyping |=," U lat(T",y',T)| C: |21 U lat(I",7,7)| and therefore |Z," U

lat(I",y", )| C: |=|. Thus we can reuse rule [IAprm] to establish that Z; 1T - eq’ eq: 13" and Ts' <: Ts.

Case ([IAprm] and [EFrameprim] with h = ver/0). By Theorem[I6] we can use the induction hypothesis to establish that
adjust(Z);T;T F ey’ : Ty and Ty <: Th.
Since Ty <: T4, then also To' <: Ty and we can reuse rule [IAprm] to establish that Z;T; T - ey e3': Ts.

Case ([IAprm] and [EApprim]). In this case e1 = (\y: Ty . e)7*535Y and =T, y: T1; 5 F e: Ts.
Thus by Theorem E1 07k [e2/y] e: Ts, with Ts' <: Ts. Then by Proposition STk [eefyle: T3/, Ts' <: Ts.

6.2 Translation Preserves Typing
Theorem 3 (Translation preserves typing). If Z;T; T - e = ¢': T in the source language then Z;T; T & ¢’: T in the internal

language.

Proof. By Case analysis

Case ([TUnit] and [TVar]). Using the rule premises we can trivially apply rules [IUnit] and [IVar], respectively.

Case ([TAppl). 1. By assumption

(a) ;15T F e1 eg = insert-has? (P, e;” ey’)
2. By induction on la

(a) adjust(E); 137 - e1': (y: T}) % Ty

(b) adjust(E); ;7 F eo’: T
3. We also know that Ty <: Ty and 2y’ T: E, then (y: Th) —= Tz < (y: Ta) —
]

&

4. Since e1' ¢ T, then afi?]'\l_lgt(E);F;E F {(y: T2) =T o« (y: Th) =N T3>>}£alseel': (y: To') % T5 and

<|

(y: To) % T3 <: (y: To) =5 Ty by la, 3 andproposition

5. Since &1—(\3_(5{(5), by lemma 19| we know that strict-check(A(E) U 2)
6. Finally we proceed on the cases for insert-has?.



(a) ® = (. In this case, we also know that strict-check (=) because ) U= = =. Then we can apply rule [1App] to establish
that 5157 F (((y: To) = Ts < (y: T1) —>T3>>f“l“ ) ea: Ty
) e#0 0
i. adjust(A( YUE):D;T F ((y: To) N (y: Ty) N Ta)eee s (y: Ty') ET/) T3 by 4, privilege
monotonicity and subsumption proposition ! ’
ii. aﬁ:j\l_lgt(A(E) UE); ;T E ey’ Th by 2b, privilege monotonicity and subsumption proposition
iii. AE)UST;zk (((y: o) S Ty < (y: Th) —> Ty)f*e,’) ey’ : Ty by i, i, 5 and [TApp]

iv. Z;1;7 F has A(E)(((((y:Tg) 2T« (y: Tl)—>T3>>f“l“ V) 2):T3 by [THas]

Case ([TAppP]). 1. By assumption
(a) Z;T;T & f ex = insert-has?(®,ef o ey’)
2. aﬁj\lgt(E); ;T F ey’ : Ty, by induction on la.
3. We also know that Ty <: T.
4. Since check by we know that strict-check(A(E) U E)
5. We proceed by cases for {(y: Tz) SNy (y: TY) =T ))falsef

Case ((y: T1) N T3 <: (y: To) =, T3). Then
= €L alse
(@) ((y: To) = Ts = (y: Ty) = To){"°f = f
(b) Finally we proceed on the cases for insert-has?.
i. ® = (). In this case, we also know that strict-check(Z) because () U= = E. We can apply rule [IAppP], to establish

that Z;1;TF foeq: Ts.
ii. ®#0
A T(f)=(y: Th) % T
B. aﬁ:].\l_l;t(A(E) UE);T; T F ey’ : Ty by 2b, privilege monotonicity and subsumption proposition
C. AEYUZE;T;ZF fey: Tz by A, B, 4 and [1AppP].
D. Z;T;T F has A(S) ((<<(y; Ty) 55 Ty <= (y: Th) = )0 f) o ez) : T by [1Has]

Case ((y: T1) - STy 41 (y: Tg) =4 T3). Then
(a) ((y: To) =5 Ts = (y: Th) = T f = (tv: 7) STy (y: T) = T f
(b) adjust(_),F,x F{(y: Ts) STy e (y:T1) EN T3>falsef (y: Ty) =T fromproposmon
(c) Finally we proceed on the cases for insert-has?.
i. ® = (. In this case, we also know that strict-check(") because () U= = =Z. Then we can apply [IAppP] to establish
that 0T F (((y: Ta) = Ty < (y: Ty) = Ty M f) o es: T,
ii. ®#0
A adjust(AE) US)TSZ b ((y: To) = Ty < (y: Th) == T f: (y: Tn) =5 Ty by 4, privilege
monotonicity and subsumption proposition
B. an\l;t(A(E) UE);TTF ey’ : Ty by 2b, privilege monotonicity and subsumption proposition
C.AG)UE;zE (((y: Tn) N (y: Th) N T3>>f“lsef) oes': T3 by A, B, 4 and [1AppP].

D.ZT;7Fhas AE)((((y: ) = Ts = (y: T1) =5 TP f) 0 ea') s Ty by [IHas]

6.3 Auxiliary Lemmas and Propositions
Property 1 (Privilege Monotonicity).
s If &1 C: ®y then check(P1) —> check(P5);



* If 1 C: Oy then adjust(P) C: adjust(Ds).
Definition 1 (Consistent Adjust).
Let adjust : CPrivSet — CPrivSet be defined as follows:

adjust(Z) = a ({adjust(®) | € 7 (5)}).
Lemma4. VO € v(2), |Z| C: ®.
Proof. By definition of ||,

=- N
Dey(

and then the lemma follows by definition of intersection. O

P
)

Proposition 5. |=| = =\{;}

Proof. By cases on the definition of ~.

Case (; ¢ £). Then |Z| = ({2} =2 ==E\{¢}.
Case (;, € ). Then |Z| = {(E\{¢}) UP|® € P (PrivSet)} = Z\{;}

O
Lemma 6. |Z| € (Z).
Proof. By cases on the definition of ~:
Case (;, ¢ Z). Since «y produces a singleton with =, intersection over the singleton retrieves =.
Case (; € E). Since ) € P (CPrivSet), =\ {;} € v(E), which also is the intersection of every possible set in ~(E).

O
Lemma?7. =, C: =, = = < Eo.
Proof. By PropositionE]and definition of C, =; C: =5, which is the definition of <. O

Lemma 8. £, < = and strict-check(Z1) = strict-check (=)

Proof. Since strict-check (), then V® € ~(Z1), check(®). In particular, by Lemmal6] check (|1 |). By Privilege Monotonic-
ity Property [I| for check, therefore, check (|=5|). Then by Property [I| for check and by lemmaf4] check (®) V® € =, and thus
strict-check (=5). O

Lemma 9. [f strict-check(Z1) and =1 C: =5 then strict-check(Zs).

Proof. By lemma =1 < Zs. Therefore, the lemma follows from Lemma O
Lemma 10. |o(Y)| = N7, for T # 0.

Proof. By cases on the definition of «(T).

Case (Y = {®} branch). then ® = «(Y), and since dom () = P (PrivSet), ; & . Therefore v(®) = Y, and therefore by
definition of |-|, |a(T)| =Y.

Case (otherwise branch). Then o(Y) = (NT) U{;}. Thus |a(T)] = N{(NT) U ®|P € P (PrivSet)} and thus |a(Y)| =
N7Y.

O

Lemma 11. If("(Y1) € Y1 and (Y1) C: ((Y2), then () {adjust(P) VP € Y1} C: [ {adjust(P) VP € T2}.



Proof. Suppose ((T1) € T1 and (Y1) C: ((Y2). Now suppose ¢ € () {adjust(P) VP € T, }. Then since ()(T1) € Ty,
in particular ¢ € adjust([)(Y1)) too.

Now let @ € Y. Since ()(T1) C: ((Y2), it follows that ()(T1) C: ®. So by monotonicity, ¢ € adjust(P).

Thus, since P is arbitrary, ¢ € adjust(®) for all ® € Y5 and thus ¢ € ) {adjust(P) |VP € To}. O

Lemma 12. If = < E, then m(ul) < adJust(Eg)

i < (v(Z1)) S N(¥(E2)). Also, by Lemma [6| ((7(Z1)) € 7(Z1). Thus, by Lemma [11]
N {adjust(®) V@ € v(Z1)} C: N {adjust( ) \V<I> € v(E2)}.
Given that by definition of ~, for any = ~(E ) # (), we can infer by Lem that |o( {adjust D) VP e v(E1)})| C:

|a({adjust(®|VP € v(Z3))})|. By definition of adJust this is equivalent to |adjust(Z;)| C: \adjust(_g) ,
time is the definition of adjust(Z;) < adjust(=,). O

Lemma 13. If=;IT - e: T and =1 < =2, then Zo; ;T He: T
Proof. By structural induction over the typing derivations for =1; ;T Fe: T.

Case (Rules [IFn], [IUnit], [IVar], [IError]). All of these rules do not enforce a restriction between the =5 in the conclusions
and any Z (if existent) in the premises, so the same rule can be directly re-used to infer Zo;T;x - e: T.

Case (Rule [IApp]). By lemma since 21 < Eo, adJust(Hl) < adJust(Hg)
Thus by induction hypothesis, we can infer both that adJust(_g) D;zhe: T —> T5 and that adjust(Z2); T T - eq: To.

By Lemmal8| we also know that strict-check(Z,).
By hypothesis we also know that Ty <: Ty and |Z' U lat(T,y,T)| C
._Q,F Tk €1 €2 Tg.

Case (Rule [TAppP]). By lemma since 21 < 2y, adjust(Z;) < adjust(Zz).
Thus by induction hypothesis, we can infer both that adjust(Zy);T;Z F ey : Ty — T and that adjust(Zs); ;T - ey : Th.
Y

By Lemmal8| we also know that strict-check(Z).
By hypothesis we also know that Ty <: Ty and then we can use rule [IAppP] to establish that Z2;1;T - ey o eg: T5.

Case (Rule [[Aprm]). By lemma since 21 < 2y, adjust(Z) < adjust(Z,).
Thus by induction hypothesis, we can infer both that adjust(Z,); T; T & e1: Ty — Ty and that adjust(Z,); T; T F ey: Th.
Y

By hypothesis we also know that Ty <: Ty and |Z' U lat(T",5,T)| C
o Iix - ejopies: Ts.

[IAprm] to establish that

Case (Rule [IAprmP]). By lemmal12] since =, < =, adjust(El) < adjust(E,).

Thus by induction hypothesis, we can infer that adJust(:g); Iz eq: T,
By hypothesis we also know that Ty <: Ty, and then we can use rule [IAprmP] to establish that =o; ;T + f e eg: T5.

|

then |® UZq| C: |® U Ey| and thus PUE; < U Es.
By induction hypothesis, ® U =Z9; ;T - e: T. Then we can use rule [IHas] to establish that Z5; ;T - has ®e: T.

Case (Rule [IRst]). (21;;T - restrict Z'e: T)
By hypothesis we know that Z' < = and thus by transitivity of C, =/ < Zs. Therefore, we can use rule [IRst] with the premises
of the hypothesis to establish that Z5;1T'; T - restrict Z'e: T.

O
Proposition 14 (Subsumption). If Z1; 17 - e: T and =1 C: 2y, then Zo; 1T - e: T
Proof. By Lemmal[]} Z; < Es. Thus, by String Subsumption Lemmal[I3] Z5; ;T F e: T O

Lemma 15 (Canonical Values). [. If =;1;Z - v: Unit, then v = unit
2. ST v: Ty — Ty, thenv = (\x: Ty . ) 25067
T1



Proof. The only rules for typing values in our type system are [IUnit], [IFn] and [I[Fnprm], respectively. They associate the type
premises with the expressions in the conclussions. O

Theorem 16. ¢ € v(Z) = adjust(®) € y(adjust(E)).

Proof. Let ® € «(E). Then adjust(®) € {adjust(®’) | &' € v(E)}.
By Proposition[l] {adjust(®’) | ' € v(2)} C: v(a({adjust(®’) | &’ € v(2)})), which by Definition [1] is equivalent to
~v(adjust(=)). O

Lemma 17.

1L EZzFv:T=2T2'Fv: T
2502k T=2 T2’ Fa: T

Proof. 1. We proceed by cases on v.

Case (unit). Then we can use rule [IUnit] for any other ='.

Case (\z: T . e)T2519), There is only one typing rule for functions. We can reuse the same [IFn] To type the function to
the same type in a context Z' by reusing the original premise.

2. There is only one rule for typing variable identifiers, [[Var]. Since the lemma preserves the environment I', we can use rule
[IVar] to type the identifier in any Z’ context.
O

Theorem 18 (Preservation of types under substitution). If Z;1',x: T1;T F e3: T5 and Z; 17T - v: Ty with Ty <: T, then
=07 [e2fa]eg: T and T <: Ts.

Proof. By structural induction over the typing derivation for e,.
Case ([IUnit] and [IError]). Trivial since substitution does not change the expression.
Case ([IVar]). By definition of substitution, the interesting cases are:

s e3 =y # x ([v/z] y = y). Then by assumption we know that T'(y) = T3 and thus we can infer that Z;T; T - y: Ts.
* e3 = x ([v/z] © = e3). Then by the theorem hypothesis we know that E;T;T + v: Ty. We also know that Z; T, x: T1; T +
x: T, which means that Ty = T} and thus T' =Ty <: Ty = T;.

Case ([IFn])).

* (A\x: T . e)T2=0Y, Then substitution does not affect the body and thus we reuse the original type derivation.
* (\y: T . e)T2=19 Then by induction hypothesis, substitution of the body preserves typing and thus rule [IFn] can be used
to reconstruct the type for the modified expression.

Case ([IHas] and [IRst]). Analogous to the case for [IFn], since substitution for these expression is defined just as recursive
calls to substitution for the premises in the typing rules.

Case ([IApp]). By Lemma we can infer that Z';T;T & v: Ty, in particular for Z' = adjust(Z). Thus we can use our
induction hypotheses to in both subexpressions of e3 = € €.

Therefore, while adjust(Z);T;% - e): (y: T)) = T and adjust(E) ;37 F e}: Th with T <: T and |=' U
yl

=/

lat(, 7, 7)| C: |2 also adjust(E);T;7 - [v/a]el: T Sy T" and adjust(S) ;137 F [v/z]€y: T' with T'), ——s
yll y//

=/

T <:T) == Thand Ty <: T,
y/

We therefore know that T'y <: T'%, |="" U lat(T',y"",%)| C: |Z| and we can use rule [I1App] to infer back that Z;T;T
[e2/z] €] [e2/x] €5 : T'%, and by transitivity of subtyping, T', <: Tj.



Case ([IAppP]). By Lemma we can infer that Z';T; T - v: Ty, in particular for Z = adjust(Z). Thus we can use our
induction hypotheses to in both subexpressions of e3 = €} o €}

Therefore, while 2;1:]\(1;1:(5) iz kel (y: TY) % T% and m(a) s e Thwith Ty <: T also adjust(Z) ;T T -

=/

[v/a] €} : T" %T?, and adjust(2) ; T; T - [0/a] ey : T", with T", E—>T” <: Ty = Thand T <: Th,
Yy y'’

Y’
We therefore know that T'}, <: T"| and we can use rule [IAppP] to infer back that =;T; T &= [e2/z] €] o [e2/z] e: T', and
by transitivity of subtyping, T'% <: T5.

O
Lemma 19. c/h;adE) = strict-check(A(Z) UE)
i.e. If check(®) for some ® € v(2), then check(®) for every ® € v(A(ZE) UE).
Proof. Suppose check(®) for some ¢ € v(E)
Then T = {® € v(Z) | check(®)} # 0 so ® = |Jmins(Y) exists.
Furthermore, by monotonicity [3]], check(®).
Note that @ C: ®\|E|UE = A(E) UE, soif 3 € y(A(E) UE) then & C: ®5 and by monotonicity [3]], check(®s). O

Proposition 20. I[fE;1,T F e: Th, e ¢ T and Ty <: Ty in the internal language, then 2,157 &+ (Ty < Ty )Se: Ty and
TQI <:T5.

Proof. By Case analysis

Case (17 <: T5). 1. By assumption =; ;T Fe: Ty

2. (T < Th)Le = e by definition of metafunction.

3. 50,7 (Ty <« Th)fe: Ty by I and 2.

Case ((a1: Tn1) —> Tip #: (w2 Tor) —=» Typ and e # ). Where Ty = (21: Th1) —=s Tia, Ty = (x2: To) —=> Tho
xro Xy o

and Ty = (T, 21 : T21,$2 Tvy, f:Th)

AT = T)ge=(\f: Ty (T = Th)y, £ Pere

5D T (T < T1>Fcl [T, where Ty <: Ts byproposition
CELTE T (T < T f)7550: Ty =5 Ty by [IFun]

CEDTE (AT (T = Ty f)™ e T, and Ty’ <: Ty by [1Aprm]

A W NN~

Case ((x1: Ti1) = Tiz #: (w2: T) — Thp and e = 2). Where Ty = (a1 Tn) = Tio, T = (22: Tor) — Tz
1 T2 x1 T2
and Fl = (F,xlz T21, To: Tu)
ATy = T1)te = (I <= Th)f, e by definition of metafunction.
z
T

1
2.Z 0z Ty, < T1> e: Ty where Ty' <: Ty by proposition|2])|
3 ST E (Ts < Ti)oe: Ty by I and 2.

P

Pl‘OpOSitiOll 21. If =, F,f H f: (.’Eli Tll) % Tho, x1 €Ty, xo €1y, then E,P,f [ <(£L’22 Tgl) i—Q) Thy <= ( Tll)
1 T2

T12>§If: (x9: To1) % Tso', (depending on the cast function, Toy' = Too or Ty’ = Tia)
T2

Proof. Let Z} = 21 Ulat(T'y, 771, T3) and 5 = = U lat(T'}, 73, 0). Let IV =T, z: 1.



Case (c = true, |=Z}|\|ZL] # 0).
IVAR
I'(f) = (z1: Ti1) — Tr2 PROP.2

5‘ J{[l]

T’ ST

|El1‘ U EZQ;F/;E I (((Tll <= T21>>1£2gﬁ :E): T11/
Tu' <:Tu |21 Ula(T;,77,73)| C: 24| UIES

|2 UBL: T Zo b f: (o1: T11) %Tm

IAPRM 1 & 2 — =5
IHAS E1|UEy Mz b for, ({Th1 < T )p*" ™ 2): Tho
IRST EZQ; ;%3 & insert-has?( El1|\‘52|7f°F,(<<T11 — T21>>'I{2€x2 2)): Tz
PROP.2 Eo; ;%3 - restrict (Eé)insert—has?(ﬁll\\|52\, for,({T11 < Tm»i@éﬁ )): Tia

IFN Eo; T3 F (Toe < Ti2)E““restrict (Eé)insert—has?(\Ell|\\EQ|, Jor, ({T11 <= T21>>IT;2€@ x)): Too'

[

DT (O Top - (Taz <= Ti2) i ““restrict (Elg)insert-hax?( 2\ |22, for,((T11 = Tgﬁ}%zgﬁ z)))TQ?I;E%E: (z2: To1) ;—2> Toy'
2

Case (c=true, |2} |\|ZL| = 0). Trivial by using the same argument for c=true,

Z/\E5] # 0.

Case (c =false). Let IV =T, f: (x1: T11) i—1> Tis and T =T, x: Ts.
T1

IVAR
I'(f) = (z1: T11) % Tio PROP.2
1 / =1 T11/ SZ Ti1
=uEs; Tz - f Ty —— T — — — —
IAPRM ! ’ b J: e Tu) 1 ? ‘:ll| J 512§F/§$2 F (T < T21>;2€x2 x): Th1' Ti1' <:T11
IRST ELT @k fo (T = T ) 52972 2): Tho
IFN Eo; ;73 F (Tae < Tha) {;ﬁuerestrict (Eé)f o ((Th1 <« Tm))f}%@ z): Too'

= zk ()\m: To1 . <<T22 = Tlg))f‘mﬁrestrict (Elz)f ° (<<T11 ~= TQ1>)IQ£2€E x))ngl;Eg;ﬁ: (122 T21) ;—2> T22,
2
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